
Real-Time Workshop® Release
Notes

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop® Release Notes
© COPYRIGHT 2000–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Summary by Version . 1

Version 7.2 (R2008b) Real-Time Workshop Software . . 4

Version 7.1 (R2008a) Real-Time Workshop Software . . 14

Version 7.0.1 (R2007b+) Real-Time Workshop
Software . 21

Version 7.0 (R2007b) Real-Time Workshop Software . . 22

Version 6.6.1 (R2007a+) Real-Time Workshop
Software . 35

Version 6.6 (R2007a) Real-Time Workshop Software . . 36

Version 6.5 (R2006b) Real-Time Workshop Software . . 44

Version 6.4.1 (R2006a+) Real-Time Workshop
Software . 52

Version 6.4 (R2006a) Real-Time Workshop Software . . 53

Version 6.3 (R14SP3) Real-Time Workshop Software . . 65

Version 6.2.1 (R14SP2+) Real-Time Workshop
Software . 72

Version 6.2 (R14SP2) Real-Time Workshop Software . . 73

Version 6.1 (R14SP1) Real-Time Workshop Software . . 83

Version 6.0 (R14) Real-Time Workshop Software 84

iii

Version 5.2 (R13SP2) Real-Time Workshop Software . . 135

Version 5.1.1 (R13SP1+) Real-Time Workshop
Software . 136

Version 5.1 (R13SP1) Real-Time Workshop Software . . 138

Version 5.0.1 (R13+) Real-Time Workshop Software . . . 139

Version 5.0 (R13) Real-Time Workshop Software 142

Version 4.1 (R12.1) Real-Time Workshop Software 173

Version 4.0 (R12) Real-Time Workshop Software 187

Compatibility Summary for Real-Time Workshop
Software . 203

iv Contents

Real-Time Workshop® Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 2.

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

Latest Version
V7.2 (R2008b)

Yes
Details

Yes
Summary

Bug Reports
Includes fixes

Printable Release
Notes: PDF

Current product
documentation

V7.1 (R2008a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V7.0.1 (R2007b+) No No Bug Reports
Includes fixes

No

V7.0 (R2007b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.6.1 (R2007a+) No No Bug Reports
Includes fixes

No

V6.6 (R2007a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.5 (R2006b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.4.1 (R2006a+) No No Bug Reports
Includes fixes

No

V6.4 (R2006a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.3 (R14SP3) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

No

V6.2.1 (R14SP2+) No No Bug Reports
Includes fixes

No

1

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008b
http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2%2B%20
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2%2B%20

Real-Time Workshop® Release Notes

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

V6.2 (R14SP2) Yes
Details

No Bug Reports
Includes fixes

No

V6.1 (R14SP1) Yes
Details

No Fixed bugs No

V6.0 (R14) Yes
Details

Yes
Summary

Fixed bugs No

V5.2 (R13SP2) No No Fixed bugs V5.2 product
documentation

V5.1.1 (R13SP1+) Yes
Details

Yes
Summary

Fixed bugs No

V5.1 (R13SP1) No No Fixed bugs No
V5.0.1 (R13+) Yes

Details
No Fixed bugs No

V5.0 (R13) Yes
Details

Yes
Summary

Fixed bugs No

V4.1 (R12.1) Yes
Details

Yes
Summary

Fixed bugs No

V4.0 (R12) Yes
Details

Yes
Summary

No bug fixes No

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

2

http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/rtw/rtw_product_page.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/rtw/rtw_product_page.html

Summary by Version

Review the release notes for other MathWorks™ products required for this
product (for example, MATLAB® or Simulink®) for enhancements, bugs, and
compatibility considerations that also might impact you.

If you are upgrading from a software version other than the most recent one,
review the release notes for all interim versions, not just for the version you
are installing. For example, when upgrading from V1.0 to V1.2, review the
release notes for V1.1 and V1.2.

What’s in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

Compatibility issues reported after the product is released appear under
Bug Reports at The MathWorks™ Web site. Bug fixes can sometimes result
in incompatibilities, so you should also review the fixed bugs in Bug Reports
for any compatibility impact.

Fixed Bugs and Known Problems

The MathWorks offers a user-searchable Bug Reports database so you can
view Bug Reports. The development team updates this database at release
time and as more information becomes available. This includes provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

3

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/

Real-Time Workshop® Release Notes

Version 7.2 (R2008b) Real-Time Workshop Software
This table summarizes what’s new in V7.2 (R2008b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

Printable Release
Notes: PDF

Current product
documentation

New features and changes introduced in this version are

• “Support for Enumerated Data Types in Generated C Code” on page 5

• “Support for Simulink Legacy Code Tool Enhancement” on page 5

• “emlc Support for Fixed-Point Data Types Greater Than 32 Bits (Up to
128 Bits)” on page 6

• “File Structure of C Code Generated by emlc Now Matches M-File
Structure” on page 6

• “emlc Uses Same Trigonometric Functions as MATLAB” on page 7

• “Improperly-Scaled Fixed-Point Relational Operators Now Match MATLAB
Results” on page 7

• “emlc Now Prevents Default fimath Mismatches for MEX Functions” on
page 7

• “Ability to Optimize Code for Vector Assignments by Replacing for-Loops
with memcpy” on page 7

• “Rate Transition Support Enhanced for Signal Line Branching and Direct
Connections Between Asynchronous Rates” on page 8

• “Generated Code Includes Standard C Static Files (stddef.h and stdlib.h)
Only When Necessary” on page 9

• “MISRA C Code Initialization Enhancements” on page 9

4

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008b
http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/

Version 7.2 (R2008b) Real-Time Workshop® Software

• “Ability to Register Keywords to Avoid Conflicts with External Code” on
page 11

• “Use Same Custom Code Settings for Model Simulation and Real-Time
Workshop Code Generation” on page 11

• “Configure Unique Custom Code Settings for Library Models in the
Configuration Parameters Dialog Box” on page 11

• “Flexible Configuration Options for Referenced Models in TLC-Based
Custom Targets” on page 12

• “Optimize Floating-Point to Integer Data Type Conversions Using New
Configuration Parameter” on page 12

• “New and Enhanced Demos” on page 13

Support for Enumerated Data Types in Generated C
Code
Real-Time Workshop® software now supports enumerated data types in code
generated for Simulink models and Stateflow® charts. For details, see:

• “Using Enumerated Data” in the Simulink documentation

• “Using Enumerated Data in Stateflow Charts”

• “Enumerated Data Types in Generated Code”

Support for Simulink Legacy Code Tool Enhancement
The Real-Time Workshop software supports the new Legacy Code Tool
S-function options field, singleCPPMexFile. When set (1), this option

• Requires you to generate and manage an inlined S-function as only one file
(.cpp) instead of two (.c and .tlc)

• Maintains model code style — level of parentheses usage and preservation
of operand order in expressions and condition expressions in if
statements—as specified by model configuration parameters

When you choose not to use this option, code generated by the Legacy Code
Tool does not reflect code style configuration settings and requires you to
manage C MEX and TLC files.

5

Real-Time Workshop® Release Notes

For more information, see

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions documentation

• “Automating the Generation of Files for Fully Inlined S-Functions Using
Legacy Code Tool” in the Real-Time Workshop documentation

• legacy_code function reference page

Compatibility Considerations

• If you upgrade from an earlier release, you can continue to use S-functions
generated from the Legacy Code Tool available in earlier releases. You can
continue to compile the S-function source code and you can continue to use
the compiled output from an earlier release without recompiling the code.

• If you set the new singleCPPMexFile options field to true (1) when creating
an S-function, you cannot use that S-function, in source or compiled form,
with versions of Simulink earlier than Version 7.2 (R2008b).

emlc Support for Fixed-Point Data Types Greater
Than 32 Bits (Up to 128 Bits)
emlc now supports fixed-point word lengths up to 128 bits for C code
production. This increase in maximum precision to 128 bits supports
generating efficient code for targets with nonstandard word sizes.

File Structure of C Code Generated by emlc Now
Matches M-File Structure
In previous releases emlc generated code in a single C file, no matter how
many source M files were compiled. Now, the generated C file structure
matches the original M-file structure. emlc generates one C file for every M
file for which a separate top-level function is generated. This association
makes it easier to correlate the generated C code with the compiled M-code.
For more information, see “Partitioning Generated Files for Readability” in
the Real-Time Workshop documentation.

6

Version 7.2 (R2008b) Real-Time Workshop® Software

emlc Uses Same Trigonometric Functions as MATLAB
emlc now uses the same library as MATLAB for implementing trigonometric
operations in MEX function targets. In previous releases, emlc used the C
compiler implementation of trigonometric functions, sometimes producing
different results from MATLAB. Now, results are consistent with MATLAB
and independent of compiler choice.

Improperly-Scaled Fixed-Point Relational Operators
Now Match MATLAB Results
When evaluating relational operators, emlc computes a common type that
encompasses both input operands. In previous releases, if the common type
required more than 32 bits, code generated by emlc may have given different
answers from MATLAB. Now, the answers are consistent.

Compatibility Consideration
Some relational operators generate multi-word code even if one of the
fixed-point operands is not a multi-word value. To work around this issue,
cast both operands to the same fixed-point type (using the same scaling
method and properties).

emlc Now Prevents Default fimath Mismatches for
MEX Functions
MEX functions generated with emlc use the default fimath value in effect
at compile time. If you do not specify a default fimath value explicitly using
the -F option, emlc uses the MATLAB default fimath value. If your MEX
function uses the MATLAB default fimath, emlmex generates an error if the
compile-time value does not match the runtime value.

Ability to Optimize Code for Vector Assignments by
Replacing for-Loops with memcpy
This release provides two new model parameters, Use memcpy for vector
assignment and Memcpy threshold (bytes), which allow you to optimize
Real-Time Workshop generated code for vector assignments by replacing
for-loops with memcpy function calls. The new parameters appear on the

7

Real-Time Workshop® Release Notes

Optimization pane of the Configuration Parameters dialog box, immediately
under the Loop unrolling threshold parameter.

The memcpy function can be more efficient than for-loop controlled element
assignment for large data sets. Where memcpy offers improved execution
speed, you can use the new model options to specify that generated code
should use memcpy when assigning a vector signal.

Selecting the Use memcpy for vector assignment option enables the
associated parameter Memcpy threshold (bytes), which allows you to
specify the array size in bytes at or above which memcpy should replace
for-loops in the generated code for vector assignments. For more information,
see “Use memcpy for vector assignment” and “Memcpy threshold (bytes)” in
the Simulink Graphical User Interface documentation.

Rate Transition Support Enhanced for Signal
Line Branching and Direct Connections Between
Asynchronous Rates

Branching Supported on Output Port of Asynchronous Rate
Transition Block
In previous releases, if a signal branched in order to drive multiple
asynchronous subsystems, each branch of the signal required a separate Rate
Transition block. In this release, you can place a single Rate Transition block
on the signal line ahead of the branch, and then branch on the Rate Transition
block output signal line. Eliminating the need for multiple Rate Transition
blocks simplifies the model diagram and can improve code efficiency.

Asynchronous Subsystems Can Directly Connect When Rate
Transition Protection Not Required
In previous releases, Rate Transition blocks were required at each port of
an asynchronous subsystem, even when rate transition protection was not

8

Version 7.2 (R2008b) Real-Time Workshop® Software

required. Generally, rate transition protection is not required when the
sample times for a signal’s source and destination blocks have the same
priority.

In this release, Rate Transition blocks can be omitted where rate transition
protection is unnecessary, allowing direct connection between asynchronous
subsystems. Specifically,

• Two asynchronous function-call subsystems with the same priority now can
be directly connected

• An asynchronous function-call subsystem can have a direct feedback loop
with no Rate Transition block in the loop

Eliminating Rate Transition blocks where rate transition protection is not
required simplifies the model diagram and can improve code efficiency.

Generated Code Includes Standard C Static Files
(stddef.h and stdlib.h) Only When Necessary
In previous releases, code generated by the Real-Time Workshop software
always included the stddef.h header file, and for Stateflow content, the
stdlib.h header file, regardless of the specific needs of the application or the
target environment. In this release, generated code does not automatically
include stddef.h or stdlib.h unless your model contains a utility function
that requires it.

MISRA C Code Initialization Enhancements
Previously, the Real-Time Workshop build process occasionally generated
initialization code that was not compliant with MISRA C® standards. In
R2008b, using the Use memset to initialize floats and doubles to 0.0
optimization generates initialization code that is always MISRA C compliant,
resulting in safer, more efficient code. For details, see “Use memset to
initialize floats and doubles to 0.0” in the Simulink documentation.

Compatibility Considerations

• For models you created previously that have the Use memset to initialize
floats and doubles to 0.0 check box cleared, if you rebuild using R2008b

9

Real-Time Workshop® Release Notes

Real-Time Workshop software, the generated code size might increase.
To generate smaller code, select the Use memset to initialize floats
and doubles to 0.0 check box. The “Check optimization settings” Model
Advisor check is available to help you determine if the current setting of
the parameter is correct.

• If your hardware does not represent numerical zero for floating-point data
as bit pattern 0 (all bits 0), you must clear the Use memset to initialize
floats and doubles to 0.0 check box.

• The Use memset to initialize floats and doubles to 0.0 check box is
selected by default for new models.

10

Version 7.2 (R2008b) Real-Time Workshop® Software

Ability to Register Keywords to Avoid Conflicts with
External Code
Previously, external environments could use keywords that the Real-Time
Workshop code generation process created in the generated code, resulting
in clashes between the external environment and the generated code. In
R2008b, you can register the set of keywords that the code generation process
should not use, facilitating code integration where outside functions and
global variables are unknown in the Simulink model.

The Reserved names parameter is located on the Real-Time
Workshop > Symbols pane in the Configuration Parameters dialog box. For
more information, see “Real-Time Workshop Pane: Symbols” in the Real-Time
Workshop Reference and “Configuring Real-Time Workshop Code Generation
Parameters” in the Real-Time Workshop User’s Guide.

Use Same Custom Code Settings for Model Simulation
and Real-Time Workshop Code Generation
Previously, for models that contained Embedded MATLAB™ Function blocks,
Stateflow charts, or Truth Table blocks, custom code settings for simulation
and Real-Time Workshop code generation were entered separately. In
R2008b, you can choose to use the same custom code settings in both cases
to avoid entering information twice.

The Use the same custom code settings as Simulation Target parameter
is located on the Real-Time Workshop > Custom Code pane in the
Configuration Parameters dialog box. For more information, see “Real-Time
Workshop Pane: Custom Code” in the Real-Time Workshop Reference and
“Configuring Real-Time Workshop Code Generation Parameters” in the
Real-Time Workshop User’s Guide.

Configure Unique Custom Code Settings for Library
Models in the Configuration Parameters Dialog Box
In general, library models use custom code settings of the parent model during
the Real-Time Workshop build process. However, libraries that contain
Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks
can use custom code settings unique from the parent model. These libraries
can have their own set of Real-Time Workshop configuration parameters

11

Real-Time Workshop® Release Notes

separate from the parameters of the parent model. Select Tools > Open
RTW Target in the Embedded MATLAB Editor or Stateflow Editor for your
library model.

For information about custom code parameters, see “Real-Time Workshop
Pane: Custom Code” in the Real-Time Workshop Reference and “Configuring
Real-Time Workshop Code Generation Parameters” in the Real-Time
Workshop User’s Guide.

Compatibility Considerations
Previously, you could configure custom code for a Stateflow library model on
the Custom Code pane in the RTW Target dialog box. In R2008b, these
custom code parameters are migrated to the Configuration Parameters dialog
box. Therefore, if you have scripts that use the Stateflow API to configure the
Target object (rtw) for library models, you must update your scripts to use
the get_param and set_param commands instead.

For details, see “Library Models: Mapping of GUI Options from the RTW
Target Dialog Box to the Configuration Parameters Dialog Box” and “Updating
Scripts That Set Options Programmatically for Simulation and Embeddable
Code Generation” in the Stateflow and Stateflow® Coder™ Release Notes.

Flexible Configuration Options for Referenced
Models in TLC-Based Custom Targets
In R2008b, you can specify that a configuration option for a TLC-based custom
target need not have the same value in a referenced model that it has in the
parent model. By default, the values must be the same in both models. For
information about overriding this default, see “Controlling Configuration
Option Value Agreement” in the Real-Time Workshop® Embedded Coder™
documentation.

Optimize Floating-Point to Integer Data Type
Conversions Using New Configuration Parameter
R2008b introduces a new configuration parameter to remove code that
maps NaN values to integer zero, increasing efficiency of generated code for
floating-point to integer or fixed-point data type conversions. See “Remove

12

Version 7.2 (R2008b) Real-Time Workshop® Software

code from floating-point to integer conversions with saturation that maps
NaN to zero” in the Simulink documentation for more information.

New and Enhanced Demos
The following demo has been added:

Demo... Shows How You Can...

rtwdemo_rtiostream Implement a communication channel to enable exchange
of data between different processes (for example, for
host/target communication during Processor-in-the-Loop
or External Mode simulation).

13

Real-Time Workshop® Release Notes

Version 7.1 (R2008a) Real-Time Workshop Software
This table summarizes what’s new in V7.1 (R2008a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Removed Static Libraries rtwlib_* to Simplify Code Integration” on page
15

• “New API for Registering Hardware Device Vendor and Type” on page 15

• “More Cases Supported for Rate Transition Block Automatic Insertion”
on page 16

• “Removed Limitations for Number of Referenced Models Built” on page 16

• “BuildInfo API Now Provides Composite Model Reference Description”
on page 16

• “BuildInfo API Better Supports Non-Compiled Dependencies” on page 16

• “MATLAB Editor Syntax Highlighting for Target Language Compiler
(TLC) Code” on page 17

• “New Configuration Option “Include custom source code” for S-Function
Target” on page 17

• “New Configuration Objects for Specifying Constant Function Inputs to
emlc” on page 17

• “emlc Searches Directories in Different Order” on page 17

• “Generated Code No Longer Automatically Includes math.h Header File”
on page 18

14

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2008a

Version 7.1 (R2008a) Real-Time Workshop® Software

• “Default TCP/IP Transport for External Mode Uses New Server (Target)
Side Communication Interface” on page 19

• ““What’s This?” Context-Sensitive Help Available for Simulink
Configuration Parameters Dialog” on page 20

• “New and Enhanced Demos” on page 20

Removed Static Libraries rtwlib_* to Simplify Code
Integration
In previous releases, the Real-Time Workshop software provided
additional source files and functions for use in building your code in the
matlabroot/rtw/c/libsrc directory. During code generation, these
files were added to the build process. Continuing reductions of static file
dependencies that began in R2007a, this release completely removes static
libraries rtwlib_*.lib/a from the product, leaving no C source files under
matlabroot/rtw/c/libsrc. Instead, these functions and files are generated
only when needed. This reduces the number of additional source files required
to compile and build the code, which improves compile time and can simplify
code integration and verification.

New API for Registering Hardware Device Vendor
and Type
This release provides a hardware device registration API that allows you
to add “Device vendor” and “Device type” values to the default set that is
displayed on the “Hardware Implementation Pane” of the Configuration
Parameters dialog box.

To use this API, you create an sl_customization.m file, located in your
MATLAB path, that invokes the registerTargetInfo function and fills
in a hardware device registry entry with device information. The device
information will be registered with Simulink software for each subsequent
Simulink session.

For more information, see “Registering Additional Device Vendor and Device
Type Values” in the Real-Time Workshop documentation.

15

Real-Time Workshop® Release Notes

More Cases Supported for Rate Transition Block
Automatic Insertion
Auto-insertion of Rate Transition blocks is now supported for additional
rate transitions, such as sample times with nonzero offset, and between
non-integer-multiple sample times.

Additionally, as described in “Rate Transition Block Enhancements” in the
Simulink Release Notes, this release allows you to

• Control the level of data transfer determinism when auto-insertion of Rate
Transition blocks is selected for your model

• Specify Rate Transition block output port sample time as a multiple of
input port sample time

Removed Limitations for Number of Referenced
Models Built
In previous releases, Microsoft® Windows® imposed a limit on the number
of models that could be referenced in a model hierarchy. This limitation is
removed in R2008a. Under Microsoft Windows, as on all other platforms,
the number of referenced models that can appear in a model hierarchy is
effectively unlimited. See “Generating Code for Model Referencing” for
information about model referencing.

BuildInfo API Now Provides Composite Model
Reference Description
In previous releases, the model build information set up and managed using
the RTW.BuildInfo API did not include source files for referenced models. In
this release, the packNGo function supports a full model reference hierarchy,
and zip files created using packNGo now include source files for referenced
models.

BuildInfo API Better Supports Non-Compiled
Dependencies
In this release, the RTW.BuildInfo API adds the following functions for
handling non-compiled files, such as DLL files required for a final executable,
or a README file:

16

Version 7.1 (R2008a) Real-Time Workshop® Software

addNonBuildFiles Add nonbuild-related files to model’s build
information

getNonBuildFiles Nonbuild-related files from model’s build
information

MATLAB Editor Syntax Highlighting for Target
Language Compiler (TLC) Code
In R2008a, syntax highlighting is available for TLC code. For details, see
“TLC Language Preferences” in the MATLAB documentation.

New Configuration Option “Include custom source
code” for S-Function Target
This release adds the model configuration option Include custom source
code, which allows you to include custom source code in the code generated
for the Real-Time Workshop S-function target (rtwsfcn.tlc). This option
is located on the Real-Time Workshop S-Function Code Generation
Options pane of the Configuration Parameters dialog box. See “Real-Time
Workshop Pane: Real-Time Workshop S-Function Code Generation Options”
in the Real-Time Workshop reference documentation for more information.

New Configuration Objects for Specifying Constant
Function Inputs to emlc
When you know primary inputs will not change at runtime, you can specify
them as constant values using emlcoder.Example and emlcoder.egc to
eliminate overhead in generated code. See “Specifying Constant Inputs Using
the -eg Option” in the Real-Time Workshop documentation.

emlc Searches Directories in Different Order
When you use the -I option to add directories to the Embedded MATLAB
path, emlc now searches directories from left to right. This behavior matches
C compilers such as gcc and the MATLAB compiler mcc.

17

Real-Time Workshop® Release Notes

Compatibility Considerations
In previous releases, the search order was from right to left. The change may
produce unexpected results if you use emlc -I with overloaded functions. For
example, suppose you specify two directories on the -I argument list, where
each directory contains a file named myFcn.m, as follows:

emlc -I 'dir1;dir2' myFcn.m

In this release, emlc adds myFcn.m from dir1 to the Embedded MATLAB
path. In previous releases, dir2 took precedence.

Generated Code No Longer Automatically Includes
math.h Header File
In previous releases, code generated by the Real-Time Workshop software
automatically included the math.h header file, defining C standard math
functions, regardless of the math requirements of the target environment.
In this release, selecting a target function library (TFL) for your model
controls which header files are included, and the generated code does not
automatically include math.h unless your model contains a floating-point
math function that requires it. For more information about selecting TFLs,
see “Selecting and Viewing Target Function Libraries” in the Real-Time
Workshop documentation.

Compatibility Considerations
If you have created an inlined S-function that implicitly relies on the
math.h provided by The MathWorks, and if the generated code for your
model no longer includes math.h, you will need to update the TLC file for
your S-function to explicitly include math.h. For example, you can add
the following line to a BlockInstanceSetup, BlockTypeSetup, or Outputs
function in your S-function TLC file:

%<LibAddToCommonIncludes("math.h")>

For more information, see LibAddToCommonIncludes(incFileName) and
“Block Target File Methods” in the Real-Time Workshop Target Language
Compiler documentation.

18

Version 7.1 (R2008a) Real-Time Workshop® Software

Default TCP/IP Transport for External Mode Uses
New Server (Target) Side Communication Interface
In previous releases, the server (target) side of the default TCP/IP transport
layer for external mode communication was defined by the following files in
the server side directory matlabroot/rtw/c/src/ext_mode/:

• common/ext_svr_transport.h

• tcpip/ext_svr_tcpip_transport.c

• tcpip/ext_tcpip_utils.c

In R2008a, the default TCP/IP transport has been revised to use a
new server (target) side communication interface. The server side of
the TCP/IP transport layer is now defined by the following files in
matlabroot/rtw/c/src/ext_mode/:

• common/rtiostream.h

• common/rtiostream_interface.c

• tcpip/rtiostream_tcpip.c

The file tcpip/ext_svr_tcpip_transport.c has been removed from the
software and the file ext_tcpip_utils.c has been moved to the client (host)
side directory matlabroot/rtw/ext_mode/tcpip/.

For details, see “Creating an External Mode Communication
Channel” in the Real-Time Workshop User’s Guide and see the files in
matlabroot/rtw/c/src/ext_mode/.

Compatibility Considerations
If you have custom template makefiles (TMFs) that use the default external
mode TCP/IP transport layer, you must locate the EXT_SRC line in each TMF
and replace "ext_svr_tcpip_transport.c" with "rtiostream_interface.c
rtiostream_tcpip.c". For example, given the following line:

EXT_SRC = ext_svr.c updown.c ext_work.c ext_svr_tcpip_transport.c

Change it to:

19

Real-Time Workshop® Release Notes

EXT_SRC = ext_svr.c updown.c ext_work.c rtiostream_interface.c rtiostream_tcpip.c

“What’s This?” Context-Sensitive Help Available for
Simulink Configuration Parameters Dialog
R2008a introduces “What’s This?” context-sensitive help for parameters
that appear in the Simulink Configuration Parameters dialog. This feature
provides quick access to a detailed description of the parameters, saving you
the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after a right-click on the Start time parameter in the Solver
pane.

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

New and Enhanced Demos
The following demo has been added:

Demo... Shows How You Can...

rtwdemo_configuration_set Work with configuration parameters to
configure a model for code generation. The
demo also links to documentation of model
options and provides tools and scripts to
help automate model configuration.

20

Version 7.0.1 (R2007b+) Real-Time Workshop® Software

Version 7.0.1 (R2007b+) Real-Time Workshop Software
This table summarizes what’s new in V7.0.1 (R2007b+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
Includes fixes

No

21

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b

Real-Time Workshop® Release Notes

Version 7.0 (R2007b) Real-Time Workshop Software
This table summarizes what’s new in V7.0 (R2007b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “New emlc Command-Line Function for Generating C Code from Embedded
MATLAB” on page 23

• “Code Generation from Embedded MATLAB Algorithms That Span
Multiple M-Files” on page 23

• “Support for Stateflow Animation with Simulink External Mode” on page 24

• “Enhanced Auto-Insertion of Asynchronous Rate Transition Blocks” on
page 24

• “Redundant Buffers Removed Between Asynchronous Rates with Same
Priority” on page 24

• “New Configuration Parameters for Controlling Compiler Optimization
Level and Specifying Custom Optimization Settings” on page 24

• “Additional Microprocessors and Enhanced Graphical Interface for
Selecting Code Generation Target Hardware” on page 27

• “Enhanced Efficiency in Generated Code of Iterator-Selector-Assignment
Patterns” on page 28

• “Code Optimizations for Concatenate, Conjugate, Dot Product, and
Transpose Blocks” on page 29

• “Negative Expressions Enhanced Efficiency in Generated Code” on page 29

• “Expression Folding Enhancement” on page 29

22

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007b

Version 7.0 (R2007b) Real-Time Workshop® Software

• “Static File Dependencies Reduced for Improved Integration and Builds”
on page 30

• “Support for Selecting and Viewing a Target Function Library (TFL)” on
page 30

• “Real-Time Workshop Reserved Keywords Listed in Documentation” on
page 31

• “Template Makefile Token ADD_MDL_NAME_TO_GLOBALS Removed”
on page 31

• “Nonzero Start Time Behavior Change” on page 31

• “TLC Custom Code Library Function Behavior Changes” on page 32

• “Template Makefile MAKECMD Path Change for gmake on Microsoft
Windows” on page 33

• “New and Enhanced Demos” on page 34

New emlc Command-Line Function for Generating C
Code from Embedded MATLAB
Embedded MATLAB introduces a new function, Embedded MATLAB
Coder (emlc), that generates C code from M-code that is compliant with
the Embedded MATLAB language subset. The generated C code can be
packaged as an executable, library, or MEX function. For more information,
see “Working with Embedded MATLAB Coder” in the Real-Time Workshop
documentation.

Code Generation from Embedded MATLAB Algorithms
That Span Multiple M-Files
You can now generate embeddable code for external M-functions from
Embedded MATLAB. This feature allows you to call external functions from
multiple locations in an M-file or model and include these functions in the
generated code.

Compatibility Considerations
In previous releases, Embedded MATLAB did not compile external
M-functions, but instead dispatched them to MATLAB for execution (after
warning). Now, the default behavior is to compile and generate code for

23

Real-Time Workshop® Release Notes

external M-functions called from Embedded MATLAB. If you do not want
Embedded MATLAB to compile external M-functions, you must explicitly
declare them to be extrinsic, as described in “Calling MATLAB Functions” in
the Embedded MATLAB documentation.

Support for Stateflow Animation with Simulink
External Mode
When running Simulink models in external mode, you can now animate states
and view Stateflow test points in floating scopes and signal viewers. For more
information on Stateflow animation, see “Animating Stateflow Charts” in
the Stateflow documentation.

Enhanced Auto-Insertion of Asynchronous Rate
Transition Blocks
In previous releases, Rate Transition blocks were required to be inserted at
each port of an asynchronous function call subsystem, even when unnecessary.
This release provides improved auto-insertion of Rate Transition blocks for
asynchronous subsystems.

Redundant Buffers Removed Between Asynchronous
Rates with Same Priority
In previous releases, Rate Transition blocks between asynchronous rates with
the same priority introduced superfluous buffers. This release removes the
redundant buffers and allows direct signal connection between asynchronous
rates with the same priority.

New Configuration Parameters for Controlling
Compiler Optimization Level and Specifying Custom
Optimization Settings
In previous releases, users controlled compiler optimizations for building
generated code by editing compiler flags into template makefiles (TMFs) or by
supplying compiler flags to the Real-Time Workshop make command.

This release adds a Compiler optimization level parameter that allows
users more flexible and generalized control over the compiler optimization

24

Version 7.0 (R2007b) Real-Time Workshop® Software

level for building generated code. For example, you can use this parameter
to trade off compilation time against run time for your model code without
having to supply compiler-specific flags to other levels of the Real-Time
Workshop build process.

The Compiler optimization level parameter appears in the Build process
subpane of the Real-Time Workshop pane of the Configuration Parameters
dialog box, as shown below:

The available values for the Compiler optimization level parameter are

• Optimizations off (faster builds)

• Optimizations on (faster runs)

• Custom— Optimize based on user-specified compiler optimization flags

The default setting is Optimizations off (faster builds) (see
“Compatibility Considerations” on page 26).

Selecting the value Custom enables the Custom compiler optimization
flags field, in which you can enter custom compiler optimization flags (for
example, -O2).

For more information about the Compiler optimization level parameter
and its values, see “Controlling Compiler Optimization Level and Specifying
Custom Optimization Settings” in the Real-Time Workshop User’s Guide and
“Compiler optimization level” and “Custom compiler optimization flags” in the
Real-Time Workshop reference documentation.

This release also provides:

25

Real-Time Workshop® Release Notes

• Compiler optimization level control for Simulink simulation (see the
Optimization pane of the Configuration Parameters dialog box)

• Command-line parameters RTWCompilerOptimization and
RTWCustomCompilerOptimizations for controlling compiler optimization
level from M-code

• For Real-Time Workshop Embedded Coder product users, target
configuration parameter CompOptLevelCompliant, which allows custom
embedded targets to declare whether they support compiler optimization
level control

Compatibility Considerations
The default setting of the new Compiler optimization level parameter
introduces a performance-related compatibility consideration. When building
and running your model code with the default setting, you may notice shorter
compilation times, but longer execution times, compared to previous releases.
The degree of difference can depend on model characteristics such as model
(code) size and number of time steps taken.

Note If you specified custom compiler optimization flags for your model using
OPT_OPTS, your existing optimization settings are honored and your model
behavior should not change.

In previous releases, the compiler optimization level for building Real-Time
Workshop generated code was controlled for each target by compiler flags
supplied in TMFs or through other Real-Time Workshop build process
mechanisms. The effective compiler optimization level setting varied from
target to target.

In this release, the compiler optimization level can be controlled through the
Compiler optimization level parameter in the Configuration Parameters
dialog box, which by default is set to the value Optimizations off (faster
builds). This setting trades off code execution speed for faster code
compilation.

26

Version 7.0 (R2007b) Real-Time Workshop® Software

To change the compiler optimization level for code generated from your
model, change the value of the Compiler optimization level parameter to
Optimizations on (faster runs) or Custom.

Additional Microprocessors and Enhanced Graphical
Interface for Selecting Code Generation Target
Hardware
In previous releases, hardware listings on the Hardware Implementation
pane of the Configuration Parameters dialog box did not follow a consistent
convention based on device vendor and type. This release introduces a
two-step hardware selection process based on device vendor and device type
parameters on the Hardware Implementation pane. To select a device in
either the Embedded hardware subpane or the Emulation hardware
subpane,

1 Select a value from the Device vendor list. Your selection of vendor will
determine the available device values in the Device type list.

2 Select a value from the Device type list. Your selection will populate the
device characteristics fields on the Hardware Implementation pane
appropriately.

27

Real-Time Workshop® Release Notes

For more information about selecting code generation target hardware,
see “Describing the Emulation and Embedded Targets” in the Real-Time
Workshop documentation and “Device vendor” and “Device type” in the
Simulink reference documentation.

Enhanced Efficiency in Generated Code of
Iterator-Selector-Assignment Patterns
New features of the Iterator-Selector-Assignment pattern reduce the global
and stack data sizes and improve the code structure and execution speed.

• Previously, a global variable was used to pass information from a Width
block outside of a For Iterator subsystem into the subsystem. In R2007b, a
Width block can be directly connected to a For Iterator block and embedded
in a For Iterator subsystem. In this configuration, the output of the Width
block is a local variable.

• In the code generated for the For Iterator block, the for loop initialization
assignment occurs before entering the loop, avoiding an extra if condition
in the generated code.

28

Version 7.0 (R2007b) Real-Time Workshop® Software

Code Optimizations for Concatenate, Conjugate, Dot
Product, and Transpose Blocks
the Real-Time Workshopbuild process uses a new technique to handle
matrix data, resulting in generating shorter, better performing code for the
Concatenate, Conjugate, Dot Product, and Transpose blocks.

Previously, temporary buffers were created to carry concatenated signals.
In R2007b, the Real-Time Workshop build process eliminates unnecessary
temporary buffers and writes the concatenated signal to the downstream
global buffer directly, reducing the stack size and improving code execution
speed.

Negative Expressions Enhanced Efficiency in
Generated Code
Previously, the Real-Time Workshop build process generated the negative
expression:

expr * (-1)

In R2007b, the Real-Time Workshop build process generates a simpler
expression to provide a solution that is closer to hand code.

-expr

Expression Folding Enhancement
Expression folding is enhanced to reduce the size of code and improve code
execution speed. In R2007a, the expression folding code generation process
created temporary variables, as shown in bold in the following example:

real_T rtb_Merge[12];
int32_T i;
for (i = 0; i < 12; i++) {

if (folding_U.In3 > 0.0) {
rtb_Merge[i] = 2.0 * In1[i];

} else {
rtb_Merge[i] = 3.0 * In2[i];

}
folding_Y.Out1[i] = rtb_Merge[i];

}

29

Real-Time Workshop® Release Notes

In R2007b, temporary variable are no longer present in the generated code
and the global buffer is directly written to, as shown in bold in the following
example:

int32_T i;
for (i = 0; i < 12; i++) {

if (folding_U.In3 > 0.0) {
folding_Y.Out1[i] = 2.0 * In1[i];

} else {
folding_Y.Out1[i] = 3.0 * In2[i];

}
}

Static File Dependencies Reduced for Improved
Integration and Builds
the Real-Time Workshop software provides additional source files and
functions for use in building your code in the matlabroot/rtw/c/libsrc
directory. During code generation, these files are added to the build process.
Continuing reductions of static file dependencies that began in R2007a, this
release removes additional source files from the libsrc directory. Instead,
these functions and files are generated only when needed. This reduces the
number of additional source files required to compile and build the code, which
improves compile time and can simplify code integration and verification.

Support for Selecting and Viewing a Target Function
Library (TFL)
In this release, the Real-Time Workshop Embedded Coder software introduces
the Target Function Library (TFL) API for mapping math functions and
operators to target-specific code. the Real-Time Workshop software supports
the abilities to

• Select an existing math library to use with your model. To select a math
library, go to the Interface pane of the Configuration Parameters dialog
box and select an appropriate value from the Target function library
drop-down list.

• View the content of target function library tables that were created using
the Real-Time Workshop Embedded Coder software. To bring up the

30

Version 7.0 (R2007b) Real-Time Workshop® Software

TFL Viewer with all available math libraries listed, issue the MATLAB
command RTW.viewTfl.

For more information, see “Selecting and Viewing Target Function Libraries”.

Real-Time Workshop Reserved Keywords Listed in
Documentation
The complete list of Real-Time Workshop reserved keywords is available at
“Reserved Keywords” in the Real-Time Workshop documentation.

Compatibility Considerations
Real-Time Workshop keywords are reserved for use internal to the Real-Time
Workshop software or C programming, and should not be used in your model
as identifiers or function names. If your model uses these keywords, you
should modify your model to use words that are not reserved. If your model
contains any reserved keywords, the Real-Time Workshop build does not
complete and an error message is displayed.

Template Makefile Token
ADD_MDL_NAME_TO_GLOBALS Removed
The ADD_MDL_NAME_TO_GLOBALS token is no longer available for use in
template makefiles.

Compatibility Considerations
If you have the ADD_MDL_NAME_TO_GLOBALS token in your template
makefile, the code generation make process issues an error. Remove the
ADD_MDL_NAME_TO_GLOBALS token from all template makefiles.

Nonzero Start Time Behavior Change
Previously, the Real-Time Workshop software issued a warning when
generating code for models with nonzero start time when the selected target
did not support nonzero start time, and the generated code might not have
operated correctly. In R2007b, when the Real-Time Workshop build process
encounters this condition, the build does not complete and an error message
is displayed.

31

Real-Time Workshop® Release Notes

For a list of targets that support nonzero start time, see “Targets Supporting
Nonzero Start Time” in the Real-Time Workshop User’s Guide.

Compatibility Considerations
Previously, the Real-Time Workshop build process generated correct code
for absolute-time independent models without error. In R2007b, before
generating code, set the model start time to zero for no change in functionality
of the generated code.

TLC Custom Code Library Function Behavior Changes
In R2007b, the following TLC custom code library functions behave differently:

• LibSystemOutputCustomCode

• LibSystemUpdateCustomCode

• LibSystemInitializeCustomCode

• LibSystemDerivativeCustomCode

• LibSystemEnableCustomCode

• LibSystemDisableCustomCode

Compatibility Considerations
Previously, the Real-Time Workshop build process generated correct code
for TLC custom code library functions without error. In R2007b, the
Real-Time Workshop build process requires all calls to TLC custom code
functions to be declared in the top-level S-function .tlc file, otherwise the
custom code function is ignored. If your top-level S-function indirectly
calls a TLC custom code function, you must include the white space
delimited TLC custom code function call as a TLC comment in the top-level
S-function. For example, if your top-level S-function file calls another file
that calls LibSystemOutputCustomCode, you must include the comment
%%LibSystemOutputCustomCode() in the top-level S-function .tlc file. the
Real-Time Workshop build process generates an error when it detects that a
S-function indirectly calls TLC custom code functions without the required
comment.

32

Version 7.0 (R2007b) Real-Time Workshop® Software

LibSystemOutputCustomCode and LibSystemUpdateCustomCode behave
differently in rate-grouped and non-rate-grouped code generation modes when
called from a block output or update function. The system’s output and update
custom code is no longer duplicated if it has been registered by a block in the
output or update function in a rate-grouped multirate system. The custom
code is executed for all rates in rate-grouped single-tasking modes, and is
executed once in non-rate-grouped multitasking modes. The old behavior is
preserved if the block registers the custom code for the parent system’s output
or update function in TLC block functions other than output and update, for
example BlockInstanceSetup. This ensures the custom code block library
works the same as in previous releases. The behavior of the Real-Time
Workshop custom code block library remains unchanged.

Template Makefile MAKECMD Path Change for
gmake on Microsoft Windows
In R2007b, Windows template makefiles (TMFs) that use gmake (*_lcc.tmf)
specify a different path to make than in previous releases.

33

Real-Time Workshop® Release Notes

Compatibility Considerations
If you have customized a Windows TMF that uses gmake, update your
TMF for the path change by removing \rtw from the MAKECMD line. For
example, change

MAKECMD = "%MATLAB%\rtw\bin\win32\gmake"

to

MAKECMD = "%MATLAB%\bin\win32\gmake"

New and Enhanced Demos
The following demo has been added:

Demo... Shows How You Can...

rtwdemo_emlcbasicdemo Use Embedded MATLAB Coder (emlc) to
generate embeddable C code from M-code,
compile, run and view the generated C code,
and display the results.

34

Version 6.6.1 (R2007a+) Real-Time Workshop® Software

Version 6.6.1 (R2007a+) Real-Time Workshop Software
This table summarizes what’s new in V6.6.1 (R2007a+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
Includes fixes

No

35

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a%2B
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a%2B

Real-Time Workshop® Release Notes

Version 6.6 (R2007a) Real-Time Workshop Software
This table summarizes what’s new in Version 6.6 (R2007a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

Current product
documentation

New features and changes introduced in this version are

• “Static File Dependencies Reduced For Improved Integration and Builds”
on page 37

• “Support for Simulink Legacy Code Tool Enhancements” on page 37

• “New Target Language Compiler Tutorial” on page 39

• “Code Generation for Multidimensional Signals” on page 39

• “Enhanced Checking and Reporting for Identifier Conflicts” on page 39

• “Enhanced Support for Tunable Parameters in Expressions” on page 40

• “New Loss of Tunability Diagnostic” on page 40

• “Support for Microsoft® Visual C++ Express Edition” on page 40

• “Enhanced Code Efficiency, Including Merge Block Optimizations” on
page 40

• “Reporting of Unconnected Signal Generators” on page 41

• “Real-Time Workshop Profiling Works with Referenced Models” on page 41

• “New Makefile Command Controls Location and Naming of Model
Reference Libraries” on page 41

• “New TMF Token MODELREF_LINK_RSPFILE Supports Linking
Response Files for Model Reference” on page 41

36

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2007a
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/

Version 6.6 (R2007a) Real-Time Workshop® Software

• “New sl_customization Based Method for Registering External Mode
Transport Layers” on page 42

• “New and Enhanced Demos” on page 42

Static File Dependencies Reduced For Improved
Integration and Builds
The Real-Time Workshop software provides additional source files and
functions for use in building your code in the matlabroot/rtw/c/libsrc
directory. During code generation, these files are added to the build process.
This release removes over 200 source files from the libsrc directory. Instead,
these functions and files are generated only when needed. This reduces the
number of additional source files required to compile and build the code, which
improves compile time and can simplify code integration and verification.

Support for Simulink Legacy Code Tool Enhancements
The Real-Time Workshop software supports the following Legacy Code Tool
enhancements:

• New fields in the Legacy Code Tool data structure:
InitializeConditionsFcnSpec and SampleTime.
InitializeConditionsFcnSpec defines a function specification for a
reentrant function that the S-function calls to initialize and reset states.
SampleTime allows you to specify whether sample time is inherited from
the source block, represented as a tunable parameter, or fixed.

• Support for state (persistent memory) arguments in registered function
specifications.

• Support for complex numbers specified for input, output, and parameter
arguments in function specifications. This support is limited to use with
Simulink built-in data types.

• Support for multidimensional arrays specified for input and output
arguments in function specifications. Previously, multidimensional array
support applied to parameters only.

• Ability to apply the size function to any dimension of function input
data—input, output, parameter, or state. The data type of the size
function’s return value can be any type except complex, bus, or fixed-point.

37

Real-Time Workshop® Release Notes

• A new Legacy Code Tool option, 'backward_compatibility', which you
can specify with the legacy_code function. This option enables Legacy
Code Tool syntax, as made available from MATLAB Central in releases
before R2006b, for a given MATLAB session.

38

Version 6.6 (R2007a) Real-Time Workshop® Software

• The following new demos:

rtwdemo_lct_sampletime
rtwdemo_lct_work
rtwdemo_lct_cplxgain
rtwdemo_lct_ndarray

For more information, see

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions documentation

• “Automating the Generation of Files for Fully Inlined S-Functions Using
Legacy Code Tool” in the Real-Time Workshop documentation

• legacy_code function reference page

New Target Language Compiler Tutorial
The Target Language Compiler (TLC) has been updated and includes a new
tutorial that provides new users with an introduction to TLC syntax. See
“Target Language Compiler Tutorials” for more information.

Code Generation for Multidimensional Signals
The Real-Time Workshop software now supports code generation for
multidimensional signals. For more information, see “Multidimensional
Signals” in the Simulink release notes.

Enhanced Checking and Reporting for Identifier
Conflicts
the Real-Time Workshop software supports the following identifier conflict
enhancements:

• Performance improvement: For large models, the Real-Time Workshop
software reviews 100 times more identifiers while delivering the same
performance as in R2006a.

• MISRA® compliance: All model reference identifiers and all reused
subsystem identifiers comply with MISRA guidelines.

39

Real-Time Workshop® Release Notes

• Conflict detection: A more unified conflict detecting and reporting
mechanism checks more identifiers, providing more information when
conflicts occur.

Enhanced Support for Tunable Parameters in
Expressions
Expressions that index into tunable parameters, such as P(1)+P(2)/P(i),
retain their tunability in generated code, including simulation code that is
generated for a referenced model. Both the indexed parameter and the index
itself can be tuned.

Parameter expressions of the form P(i) retain their tunability if all of the
following are true:

• The index i is a constant or variable of double data type

• P is a 1D array, or a 2D array with one row or one column, of double data
type

• P does not resolve to a mask parameter, but to a variable in the model or
the base workspace

New Loss of Tunability Diagnostic
Previously, any loss of tunability generated a warning. In R2007a, you can
use the Loss of Tunability diagnostic to control whether loss of tunability is
ignored or generates a warning or error. See “Detecting Loss of Tunability”
for details.

Support for Microsoft Visual C++ Express Edition
The Real-Time Workshop software now supports using Microsoft® Visual
C++® Express Edition for compilation.

Enhanced Code Efficiency, Including Merge Block
Optimizations
The Merge block adds support for dead code elimination of its inputs. For any
Merge block input port that is connected to an unconditionally executed block,
dead code elimination removes the calculation of unused values.

40

Version 6.6 (R2007a) Real-Time Workshop® Software

Reporting of Unconnected Signal Generators
During code generation, the Signal & Scope Manager reports unconnected
signal generators.

Real-Time Workshop Profiling Works with Referenced
Models
You can now use Real-Time Workshop Profiling with referenced models,
which was not possible in previous releases.

New Makefile Command Controls Location and
Naming of Model Reference Libraries
Except on the Apple® Macintosh® platform, you can use the makefile command
USE_MDL_LIBPATHS to change the Real-Time Workshop default location and
naming for model reference libraries. See “Controlling the Location of Model
Reference Libraries” for details.

New TMF Token MODELREF_LINK_RSPFILE Supports
Linking Response Files for Model Reference
R2007a adds the template makefile (TMF) token MODELREF_LINK_RSPFILE
for use with model reference. The MODELREF_LINK_RSPFILE token for the
top-level model expands to the name of a response file that the top-level model
links against. This token is valid only for build environments that support
linker response files.

MODELREF_LINK_RSPFILE offers a preferred alternative to the token
MODELREF_LINK_LIBS, which expands to a list of referenced model libraries
that the top-level model links against, provided that the linker supports
response files.

For more information, see “Supporting Optional Features” in the Real-Time
Workshop Embedded Coder documentation.

41

Real-Time Workshop® Release Notes

New sl_customization Based Method for Registering
External Mode Transport Layers
This release introduces a new method for registering external mode transport
layers with the Simulink software. To register a TCP/IP or serial transport
layer with a custom target, or to register a custom transport layer, you must
add an entry of the following form to an sl_customization.m file on the
MATLAB path:

function sl_customization(cm)

cm.ExtModeTransports.add('stf.tlc', 'transport', 'mexfile', 'Level1');

%end function

For more information about using the new transport registration method
with custom targets and/or custom transport layers, see “Client/Server
Implementations” and “Creating an External Mode Communication Channel”
in the Real-Time Workshop User’s Guide.

Compatibility Considerations
In previous releases, external mode transport layers were associated with
targets based on target class, so that a custom target derived from a
MathWorks GRT or ERT target by default would inherit its external mode
transport layers.

Beginning in this release, external mode transport layers are associated with
targets based on system target file name rather than target class. In order to
support external mode, custom targets that previously inherited transport
layers based on target class now must specify cm.ExtModeTransports.add
lines in an sl_customization.m file on the MATLAB path, as shown above.

New and Enhanced Demos
The following demos have been added:

Demo... Shows How You Can...

rtwdemo_lct_sampletime Specify whether sample time is inherited
from the source block, represented as a
tunable parameter, or fixed

42

Version 6.6 (R2007a) Real-Time Workshop® Software

Demo... Shows How You Can...

rtwdemo_lct_work Use state arguments in registered function
specifications

rtwdemo_lct_cplxgain Specify complex numbers for input, output,
and parameter arguments in function
specifications.

rtwdemo_lct_ndarray Specify multidimensional arrays for
input and output arguments in function
specifications.

43

Real-Time Workshop® Release Notes

Version 6.5 (R2006b) Real-Time Workshop Software
This table summarizes what’s new in Version 6.5 (R2006b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
Includes fixes

No

New features and changes introduced in this version are

• “Support for Simulink® Report Generator” on page 45

• “New Pack-and-Go Utility” on page 45

• “Support for New Simulink.SubSystem.getChecksum Command for
Determining Why Subsystem Code Is Not Reused” on page 46

• “Merge Block Input Signals Can Have Storage Classes” on page 46

• “Code Formatting Consistency Improvements” on page 47

• “Support for Simulink Legacy Code Tool” on page 47

• “New findIncludeFiles Function” on page 47

• “Show eliminated statements Model Configuration Option Renamed” on
page 48

• “Change to Default Settings for Multitasking Diagnostic Options” on page
48

• “Parameter Pooling Is Now Always Enabled” on page 49

• “PreLookup Index Search and Interpolation (n-D) Using PreLookup Block
Changes” on page 50

• “Character Patterns You Should Not Use in Block Names” on page 50

• “New and Enhanced Demos” on page 51

44

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006b
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006b

Version 6.5 (R2006b) Real-Time Workshop® Software

Support for Simulink Report Generator
The Real-Time Workshop software has added support for the Simulink®
Report Generator™. You can use the Simulink Report Generator to document
a code generation project in a variety of output formats: Rich Text Format
(RTF), Extensible Markup Language (XML), and Hypertext Markup
Language (HTML). By using the Real-Time Workshop codegen.rpt setup file
and the components Code Generation Summary and Import Generated Code,
you can generate a report that includes

• Model name and version

• Real-Time Workshop product version

• List of generated source and header (include) files

• Optimization and Real-Time Workshop target selection and build process
configuration settings

• Mapping of subsystem numbers to subsystem labels for models that include
subsystems

• Listings of generated and custom code for the model

To see how the Report Generator fits into the general Real-Time Workshop
workflow, see “Workflow for Developing Applications Using Real-Time
Workshop Software”. For details on using the Report Generator with the
Real-Time Workshop product, see the tutorial in “Documenting a Code
Generation Project”. See rtwReport for a description of the Real-Time
Workshop function for generating a report from the MATLAB command line
or from a script. For descriptions of the new Real-Time Workshop Report
Generator components, see Code Generation Summary and Import Generated
Code in the Simulink Report Generator documentation. For details on using
Report Generator, see the Simulink Report Generator documentation.

New Pack-and-Go Utility
The Real-Time Workshop V6.5 (R2006b) software introduces a new
pack-and-go utility that you can use to relocate static and generated code files
for a model to another development environment, such as a secure system or
an integrated development environment (IDE) that does not include MATLAB
and Simulink. This utility uses the tools for customizing post code generation
build processing and a packNGo function to find and package all files needed

45

Real-Time Workshop® Release Notes

to build an executable image for a model into a compressed file that you can
relocate and unpack using a standard zip utility.

For more information on how to use the new utility, see “Relocating Code to
Another Development Environment”.

Support for New Simulink.SubSystem.getChecksum
Command for Determining Why Subsystem Code Is
Not Reused
The V6.5 (R2006b) Real-Time Workshop software supports a new
Simulink.SubSystem.getChecksum command that you can use to determine
why subsystem code is not reused.

For a discussion on the code generation aspects of this feature, see
“Determining Why Subsystem Code Is Not Reused” in the Real-Time
Workshop documentation. For a description of the command, see
Simulink.SubSystem.getChecksum in the Simulink documentation.

Merge Block Input Signals Can Have Storage Classes
In previous releases, an input signal connected to a Merge block could not
specify any storage class except Auto. In R2006b, an input signal connected to
a Merge block can specify a non-Auto storage class. This class must be the
same for every non-Auto input or output signal connected to the block.

For information about the Merge block, see the Merge reference page in
the Simulink documentation. For details about using Merge block signal
storage classes in generated code, see the bullet for the Merge block under
Other Optimization Tools and Techniques in the Real-Time Workshop
documentation.

46

Version 6.5 (R2006b) Real-Time Workshop® Software

Code Formatting Consistency Improvements
The Real-Time Workshop software is enhanced to apply a more consistent
formatting style to the code that it generates, including integrated custom
code. The new style rules for code generation formatting pertain to

• Comments

• Blank lines and spaces

• Indentation

• Line breaks

• International characters

• #define statements

• Function definitions

• Branching and looping structural statements

• Structure definition and value initialization statements

Compatibility Considerations
No code generation readability enhancement affects the syntax or semantics
of the code. Such changes affect only the physical code appearance. Therefore,
applications and correctly engineered automated tests should be unaffected
by any readability enhancements. However, automated tests that depended
on the physical code layout may be affected. You should change such tests to
operate only on functional properties of the code.

Support for Simulink Legacy Code Tool
The Real-Time Workshop software provides code generation support for the
new Simulink Legacy Code Tool. This tool speeds the creation of S-functions
from legacy C or C++ code. For a list of related demos, see “New and
Enhanced Demos” on page 51.

New findIncludeFiles Function
A new findIncludeFiles function has been added to the build information
API. This function searches for include (header) files in all source and include

47

Real-Time Workshop® Release Notes

paths recorded in a model’s build information object and adds the files found,
along with their full paths, to the build information object.

For information on how to use the functions in the build information API, see
“Customizing Post Code Generation Build Processing”.

Show eliminated statements Model Configuration
Option Renamed
The Show eliminated statements option on the Real-Time
Workshop > Comments pane of the Configuration Parameters dialog
box has been renamed to Show eliminated blocks. The corresponding
configuration parameter ShowEliminatedStatement is not affected by this
change.

Change to Default Settings for Multitasking
Diagnostic Options
For new models created with Simulink V6.5 (R2006b) or later, the default
value for the following multitasking diagnostic options on the Configuration
Parameters dialog is set to error to avoid generation of code that might
corrupt data or produce unpredictable behavior.

• Diagnostics > Sample Time > Multitask conditionally executed
subsystem

• Diagnostics > Data Validity > Data Store Memory Block > Multitask
data store

For more information about these multitasking diagnostic options, see
“Diagnostics Pane: Sample Time” and “Diagnostics Pane: Data Validity” in
the Simulink documentation.

Compatibility Considerations
For models created with a version of Simulink before V6.5 (R2006b), when
the following conditions exist, Simulink displays a dialog box that reports
the issue and suggests that you change the diagnostic setting to error, as
recommended by the Model Advisor.

48

Version 6.5 (R2006b) Real-Time Workshop® Software

• The Tasking mode for periodic sample times option on the
Configuration Parameters Solver pane is set to MultiTasking or the
model includes an asynchronous task.

• The diagnostic setting that corresponds to the multitasking issue is set to
a value other than error.

• You use the Real-Time Workshop software to generate code for the model.

• The Real-Time Workshop software detects a multitasking issue that might
corrupt data or produce unpredictable behavior.

The dialog presents you with the following options.

Button Action

Change Change the diagnostic setting to error.
Ignore Leave the diagnostic setting as is.
Always ignore Leave the diagnostic setting as is and do not show

the dialog box again.

Parameter Pooling Is Now Always Enabled
In previous releases, the Parameter Pooling optimization was optional and
was enabled by default. Due to internal improvements, disabling Parameter
Pooling would no longer be useful in any context. The optimization is
therefore part of standard R2006b operation, and has been removed from
the user interface.

Compatibility Considerations
Upgrading a model to R2006b inherently provides the effect of enabling
Parameter Pooling in previous releases. No compatibility considerations
result from this change. If the optimization was disabled in an existing model,
a warning is generated when the model is first upgraded to R2006b. This
warning requires no action and can be ignored.

49

Real-Time Workshop® Release Notes

PreLookup Index Search and Interpolation (n-D)
Using PreLookup Block Changes
The Real-Time Workshop build process no longer uses the runtime library
functions in c/libsrc to generate code for the PreLookup Index Search
and Interpolation (n-D) Using PreLookup blocks. Instead, the Real-Time
Workshop build process generates the lookup functions for the two blocks
dynamically. In addition, if you enable the Utility function generation
option on the Real-Time Workshop > Interface pane of the Configuration
Parameters dialog box, the lookup functions are stored as shared utility
functions.

Character Patterns You Should Not Use in Block
Names
To avoid possible ambiguity in the comments in generated code, do not use
the following character patterns in block names:

• /*

• */

50

Version 6.5 (R2006b) Real-Time Workshop® Software

New and Enhanced Demos
New demos are

Demo... Shows How You Can...

rtwdemo_codegenrpt Use the Simulink Report Generator to
automatically document code you generate
with the Real-Time Workshop software.

Collection of custom code
demos:

rtwdemo_lct_bus
rtwdemo_lct_cpp
rtwdemo_lct_filter
rtwdemo_lct_fixpt_params
rtwdemo_lct_fixpt_signals
rtwdemo_lct_gain
rtwdemo_lct_inherit_dims
rtwdemo_lct_lut
rtwdemo_lct_start_term

Call external legacy C and C++ functions
(existing or custom code) that are external
to a Simulink model. The demos use an
unsupported Legacy Code Tool application
programming interface (API) to register
a legacy function prototype and create
necessary files for an S-function that
calls the specified legacy function during
simulation and in generated code. The
Legacy Code Tool allows you to:

• Provide the legacy function specification

• Generate a C MEX S-function for
simulation

• Generate a block TLC file and optional
rtwmakecfg.m file that is used during
code generation to call the legacy code

51

Real-Time Workshop® Release Notes

Version 6.4.1 (R2006a+) Real-Time Workshop Software
This table summarizes what’s new in V6.4.1 (R2006a+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
at Web site

No

52

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a%2B
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a%2B

Version 6.4 (R2006a) Real-Time Workshop® Software

Version 6.4 (R2006a) Real-Time Workshop Software
This table summarizes what’s new in V6.4 (R2006a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
at Web site

No

New features and changes introduced in this version are

• “New Build Information Application Program Interface” on page 54

• “New Mechanism for Customizing Post Code Generation Build Processing”
on page 55

• “New Model Configuration Option for Suppressing Makefile Generation”
on page 55

• “New RSim Target Option for Feeding Inport Blocks with MAT-File Data”
on page 56

• “Switch Block Optimization for Wide Control Port Signals” on page 56

• “Multiport Switch Block Enhanced to Generate Default Switch Case
Statement” on page 56

• “C++ Language Support Enhancements” on page 57

• “Support for Simulink Signal Object Initialization” on page 58

• “Identifiers and Model Reference Applications” on page 59

• “Support for Simulink Parameter Object Data Type Enhancements” on
page 59

• “Support for New Simplest Rounding Mode for Fixed-Point Simulink
Blocks” on page 59

• “Name Change for PrevZC Identifier in Generated Code” on page 60

53

http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a
http://www.mathworks.com/support/bugreports/?product=RT&release;=R2006a

Real-Time Workshop® Release Notes

• “Format Enhancements for model.rtw File” on page 60

• “Changes to TLC Files in matlabroot/rtw/c/tlc” on page 63

• “New and Enhanced Demos” on page 64

• “Documentation Enhancements” on page 64

New Build Information Application Program Interface
V6.4 (R2006a) Real-Time Workshop introduces an application program
interface (API) for populating and managing all build information associated
with a given model in a single source. This feature

• Provides a mechanism for defining build information for tool chains that
do not use make files

• Makes it easier to customize and maintain a model’s build information

The API includes methods for adding, managing, and retrieving:

• Compiler flags

• Preprocessor identifier definitions

• Link flags

• Include files and paths

• Source files and paths

• Libraries

The API also includes methods for updating file paths, extensions, and
separators.

For information on how to use the API, see the demo rtwdemo_buildInfo
and “Customizing Post Code Generation Build Processing” in the Real-Time
Workshop documentation. For descriptions of the API methods, see “Function
Reference” and “Functions — Alphabetical List”.

54

Version 6.4 (R2006a) Real-Time Workshop® Software

New Mechanism for Customizing Post Code
Generation Build Processing
Starting with V6.4 (R2006a), you can customize the Real-Time Workshop
build process to evaluate a post code generation command after generating
and writing the model’s code to disk and before generating a makefile. A
post code generation command is a user-defined M-file that typically calls
functions to get data from or add data to the model’s build information object.

This feature is useful for applications that need to control various aspects of
the build process after code generation. For example, this is necessary when
you develop your own target, or you want to apply an analysis tool to the
generated code before continuing with the build process.

To use this feature, you program the command as a script or function and then
define the command with the new PostCodeGenCommand model configuration
parameter.

For more information, see the demo rtwdemo_buildInfo and “Customizing
Post Code Generation Build Processing” in the Real-Time Workshop
documentation.

New Model Configuration Option for Suppressing
Makefile Generation
V6.4 (R2006a) adds a new option to the Real-Time Workshop pane of the
Configuration Parameters dialog box and a corresponding model configuration
parameter, GenerateMakefile, which you can use to suppress makefile
generation during the build process. For example, you might do this to
integrate tools into the build process that are not driven by makefiles.

This option controls whether the Real-Time Workshop build process generates
a makefile and is selected by default. If you clear the check box in the
graphical user interface or set the parameter to off, the Real-Time Workshop
build process does not generate a makefile for the model. When you suppress
makefile generation, you must specify any post code generation processing,
including compilation and linking, as a command you program and define,
using the feature described in “New Mechanism for Customizing Post Code
Generation Build Processing” on page 55.

55

Real-Time Workshop® Release Notes

For more information, see “Customizing Post Code Generation Build
Processing”.

New RSim Target Option for Feeding Inport Blocks
with MAT-File Data
The RSim target is enhanced with a new -i command line option that allows
you to feed an Inport block with input data during simulation from a single
MAT-file or you can change the MAT-file from one simulation to the next. The
format requirements of the MAT-file data are flexible in that it can be a single
time/data matrix, a single structure, or multiple structures.

For details on how to set up a MAT-file for use with an Inport block and
specify signal data for an Inport block, see the demo rtwdemo_rsim_i and
“Creating a MAT-File for an Inport Block” and “Specifying Signal Data File
for an Inport Block” in the Real-Time Workshop documentation.

Switch Block Optimization for Wide Control Port
Signals
In releases prior to the V6.4 (R2006a), Real-Time Workshop software
optimized code generated for a Switch block such that the code for blocks
connected to the data input ports executed conditionally. This optimization
was limited to Switch blocks with a control port receiving scalar signals.
V6.4 (R2006a) enhances Real-Time Workshop software to generate code that
performs conditional branch execution whether the Switch block’s control port
signal is a scalar value, a vector, or a matrix.

For a description of the Switch block, see Switch in the Simulink Reference.

Multiport Switch Block Enhanced to Generate Default
Switch Case Statement
In V6.4 (R2006a), the Real-Time Workshop build process is enhanced to
generate a default switch case statement for the Mulitport Switch block. For
a description of this block, see Multiport Switch in the Simulink Reference.

56

Version 6.4 (R2006a) Real-Time Workshop® Software

C++ Language Support Enhancements
The V6.4 (R2006a) Real-Time Workshop software adds support for C++ code
generation for Signal Processing Blockset™ and Video and Image Processing
Blockset™ products.

Limitations

• Microsoft Visual C and Microsoft Visual C++, GNU® C/C++, Watcom
C/C++ and Borland® C/C++ compilers have been fully tested with the V6.4
(R2006a) Real-Time Workshop software and are fully supported on 32-bit
Windows and 32/64-bit Linux® platforms. However, V6.4 (R2006a) provides
Beta C++ support only for the Intel® C/C++ compiler, which has not yet
been fully evaluated for C++ compatibility with MathWorks products.

• The Real-Time Workshop software provides Beta support for C++ code
generation for all blockset products. C++ code generation for other blockset
products has not yet been fully evaluated.

• The Real-Time Workshop software does not support C++ code generation
for the following:

Embedded Target for Infineon® C166® Microcontrollers
Embedded Target for Motorola® MPC555
Embedded Target for Motorola HC12
Embedded Target for OSEK/VDX®
Embedded Target for TI’s C2000™ DSP
Embedded Target for TI’s C6000™ DSP
SimDriveline™
SimMechanics™
SimPowerSystems™
xPC Target™

• When using the model reference feature, the language of the code generated
for the top model and any referenced models must match. For example,
if you generate C++ code for the top model, the generated code for all
referenced models must also be C++ code.

• The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

57

Real-Time Workshop® Release Notes

- Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

- Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for Simulink Signal Object Initialization
V6.4 (R2006a) introduces the ability to initialize Simulink signal objects with
user-defined values for simulation and code generation. Data initialization
increases application reliability and is a requirement of safety critical
applications. Initializing signals for both simulation and code generation can
expedite transitions between phases of Model-Based Design.

For details on using this feature, see the demo rtwdemo_sigobj_iv, “Using
Signal Objects to Initialize Signals and Discrete States” in the Simulink
documentation, and “Using Signal Objects to Initialize Signals and Discrete
States” in the Real-Time Workshop documentation.

Compatibility Considerations
In general, if a submodel uses workspace variables and the variables change,
the Real-Time Workshop build process rebuilds the submodel. This behavior
also occurs if the initial value for a signal object that corresponds to a signal
initialized from outside the model, such as a global data store or root input
port, changes.

To work around this behavior, specify the signal object’s initial value as a
tunable parameter. For example:

S = Simulink.Signal;
S.InitialValue = 'K';
K = Simulink.Parameter;
K.Value = 4;
K.RTWInfo.StorageClass = 'ExportedGlobal';

You can then use the tunable parameter to change the signal’s initial value
without triggering a subsystem build.

58

Version 6.4 (R2006a) Real-Time Workshop® Software

Identifiers and Model Reference Applications
As or Version 6.4 (R2006a), to avoid name clashes in models that use model
referencing, do one of the following:

• Increase the maximum identifier length setting for top and referenced
models until the following warning disappears:

"Warning: Insufficient space for computing symbol names in
model ...",

In this case, uniqueness of model names ensures that the names do not
clash.

• If you have a Real-Time Workshop Embedded Coder license, you can
define a unique symbol naming scheme for each model. For example, you
might define 'm1RN$M' for the first model, 'm2RN$M' for the second
model, and so forth. The uniqueness of the naming scheme prevents name
clashing.

Support for Simulink Parameter Object Data Type
Enhancements
The V6.4 (R2006a) Real-Time Workshop software supports the following
Simulink parameter object data type enhancements discussed in “Data Type
Property of Parameter Objects Now Settable” and “Range-Checking for
Parameter and Signal Object Values” in the Simulink Release Notes.

• Support for fixed-point data types

• Ability to specify the data type attribute independently of the object’s
value attribute

For a discussion on the code generation aspects of this enhancement, see the
demo rtwdemo_paramdt and “Generated Code for Parameter Data Types” in
the Real-Time Workshop documentation.

Support for New Simplest Rounding Mode for
Fixed-Point Simulink Blocks
The V6.4 (R2006a) Real-Time Workshop software supports the new Simplest
rounding mode that is available for theRound integer calculations toward

59

Real-Time Workshop® Release Notes

parameter of some fixed-point Simulink blocks. This rounding mode attempts
to reduce or eliminate the need for extra rounding code in generated code. The
Simplest rounding mode is currently available for the following blocks:

• Data Type Conversion

• Product

• Lookup Table

• Lookup Table (2-D)

• Lookup Table Dynamic

For more information, see “Rounding” in the Simulink® Fixed Point™
documentation.

Name Change for PrevZC Identifier in Generated
Code
In earlier releases, the identifier generated for a data item representing
previous zero-crossing signal states (type PrevZCSigStates_model) was
named inconsistently. Depending on your target configuration, the identifier
could be generated as model_PrevZCSigState or model_PrevZC. In V6.4
(R2006a), the identifier is generated as model_PrevZCSigState across all
configurations. For example, the following would appear in generated C code
for a model named mydemo (for which zero-crossing data is relevant):

/* Previous zero-crossings (trigger) states */
PrevZCSigStates_mydemo mydemo_PrevZCSigState;

Format Enhancements for model.rtw File
Starting in V6.4 (R2006a), the Real-Time Workshop software represents data
type information in the file model.rtw in a more compact format. This new
format omits the fields ComplexSignal, DataTypeIdx , Dimensions, and
Width from where they occurred in the following records.

Record Record Type Fields Removed

BlockOutputs Block output
ports

ComplexSignal
DataTypeIdx
Width

60

Version 6.4 (R2006a) Real-Time Workshop® Software

Record Record Type Fields Removed

Dworks Block
Dworks

ComplexSignal
Width

ExternalInputs External
inputs

ComplexSignal
DataTypeIdx
Width

ExternalOutputs External
outputs

Width

ModelParameters Model
parameters

ComplexSignal
DataTypeIdx
Dimensions
Width

The following topics discuss

• “New Target Language Compiler Library Functions That Support the New
File Format” on page 61

• “Compatibility Considerations” on page 62

New Target Language Compiler Library Functions That Support
the New File Format
In support of the new file format, V6.4 (R2006a) adds the following new
Target Language Compiler (TLC) library functions for gaining access to the
ComplexSignal, DataTypeIdx, Dimensions, and Width fields for a given
record. You can use the new functions with the new and old file formats.

Function Description

LibGetRecordIsComplex(rec) Returns the value 1 if the specified record
is complex, and 0 otherwise.

LibGetRecordDataTypeId(rec) Returns the data type identifier of the
specified record as a an integer.

61

Real-Time Workshop® Release Notes

Function Description

LibGetRecordDimensions(rec) Returns the dimensions of the specified
record as a vector of integers.

LibGetRecordWidth(rec) Returns the width of the specified record
as an integer.

Compatibility Considerations
The Target Language Compiler (TLC) includes library functions for retrieving
data from fields of the model.rtw file. If your application retrieves data
from model.rtw directly, that is, without using the documented TLC library
functions, the application will be incompatible and will produce incorrect
results. In such cases, reprogram your application to use the documented TLC
library functions to retrieve data from model.rtw.

The following table lists the fields now omitted from model.rtw and the TLC
library functions you can use to gain access to the fields for various types of
records.

Field Record Type TLC Functions

ComplexSignal Block input port LibBlockInputSignalIsComplex
LibGetRecordIsComplex

Block output port LibBlockOutputSignalIsComplex
LibGetRecordIsComplex

Block parameter LibBlockParameterIsComplex
LibGetRecordIsComplex

Block Dwork LibBlockDWorkIsComplex
LibGetRecordIsComplex
(Both functions return 1 or 0, which
map to the old values 'yes' and 'no',
respectively.)

DataTypeIdx Block input port LibBlockInputSignalDataTypeId
LibGetRecordDataTypeId

Block output port LibBlockOutputSignalDataTypeId
LibGetRecordDataTypeId

62

Version 6.4 (R2006a) Real-Time Workshop® Software

Field Record Type TLC Functions

Block parameter LibBlockParameterDataTypeId
LibGetRecordDataTypeId

Block Dwork LibBlockDWorkDataTypeId
LibGetRecordDataTypeId

Dimensions Block input port LibBlockInputSignalDimensions
LibGetRecordDimensions

Block output port LibBlockOutputSignalDimensions
LibGetRecordDimensions

Block parameter LibBlockParameterDimensions
LibGetRecordDimensions

Width Block input port LibBlockInputSignalWidth
LibGetRecordWidth

Block output port LibBlockOutputSignalWidth
LibGetRecordWidth

Block parameter LibBlockParameterWidth
LibGetRecordWidth

Block Dwork LibBlockDWorkWidth
LibGetRecordWidth

For descriptions of the new functions LibGetRecordIsComplex,
LibGetRecordDataTypeId, LibGetRecordDimensions, and
LibGetRecordWidth, see “New Target Language Compiler Library Functions
That Support the New File Format” on page 61. For descriptions of other
functions listed in the preceding table, see “TLC Function Library Reference”
in the Real-Time Workshop Target Language Compiler documentation.

Changes to TLC Files in matlabroot/rtw/c/tlc
TLC files in the directory matlabroot/rtw/c/tlc have changed.

You should not customize TLC files in this directory even though the
capability exists to do so. Such TLC customizations might not be applied
during the code generation process and can lead to unpredictable results.

63

Real-Time Workshop® Release Notes

Compatibility Considerations
Customizations to the files in matlabroot/rtw/c/tlc are not compatible
across releases. If you have customized TLC files that reside in that directory,
you must reapply your customizations when you upgrade.

New and Enhanced Demos
New demos are

Demo... Shows How You Can...

rtwdemo_buildInfo Customize post code generation build
processing by using the new build
information API and new post code
generation command

rtwdemo_paramdt Control the data type of tunable parameters
in code that the Real-Time Workshop
software generates

rtwdemo_rsim_i Use the new -i RSim target option to feed
Inport blocks with MAT-file data

rtwdemo_sigobj_iv Initialize Simulink signal objects with the
new Simulink signal object initialization
feature

The following demos have been enhanced:

• rtwdemo_rsim_batch_script

Documentation Enhancements

• New reference documentation — Real-Time Workshop Reference

• New tables that summarize dependencies of optimization and interface
model configuration parameters

• “Running Rapid Simulations” — reorganized to reflect workflow

64

Version 6.3 (R14SP3) Real-Time Workshop® Software

Version 6.3 (R14SP3) Real-Time Workshop Software
This table summarizes what’s new in V6.3 (R14SP3):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
at Web site

No

New features and changes introduced in this version are

• “New rtw_precompile_libs Function” on page 66

• “Support for Subsystem Latch Enhancements” on page 66

• “Support for Variable Transport Delay Enhancements” on page 67

• “C++ Target Language Support for theReal-Time Windows Target Product
and External Mode” on page 67

• “Rapid Simulation Target Enhanced for Use with the Distributed
Computing Toolbox Product” on page 68

• “Simulink Model and MATLAB Desktop Window Interaction Enhanced”
on page 68

• “Customizations to Built-In Blocks” on page 68

• “Use slbuild Instead of rtwgen” on page 68

• “Model Hardware Configuration Parameters Now Honor Device Type
Restrictions” on page 69

• “rem Function No Longer Supports Tunable Arguments” on page 70

• “Block Libraries, RSim Target Executables, and MAT-Files” on page 70

• “Documentation Enhancements” on page 70

65

http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP3
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP3

Real-Time Workshop® Release Notes

New rtw_precompile_libs Function
The V6.3 (R14SP3) Real-Time Workshop product introduces a new M-file
function, rtw_precompile_libs, which you can use to

• Precompile new or updated S-function libraries (MEX-files) for a model. By
precompiling S-function libraries, you can optimize system builds. Once
your precompiled libraries exist, the Real-Time Workshop build process
can omit library compilation from subsequent builds. For models that use
numerous libraries, the time savings for build processing can be significant.

• Recompile precompiled libraries included as part of the Real-Time
Workshop product, such as rtwlib or dsplib. You might consider doing
this if you need to customize compiler settings for various platforms or
environments.

For details on using rtw_precompile_libs, see “Precompiling S-Function
Libraries” in the Real-Time Workshop documentation.

Support for Subsystem Latch Enhancements
The V6.3 (R14SP3) Real-Time Workshop software supports Simulink latch
enhancements for triggered and function-call subsystems discussed in “Input
Port Latching Enhancements” in the Simulink Release Notes.

• A renamed Inport block option is available for triggered subsystems. Latch
(buffer) input was renamed to Latch input by delaying outside signal
to better reflect the option’s purpose.

• A new option, Latch input by copying inside signal, was added for the
Inport block for use with function-call subsystems.

If you select Latch input by copying inside signal for a function-call
subsystem, the Real-Time Workshop build process

• Preserves latches in generated code regardless of any optimizations that
might be set

• Places the code for latches at the start of a subsystem’s output/update
function

For more detail, see the description of the Inport block.

66

Version 6.3 (R14SP3) Real-Time Workshop® Software

Support for Variable Transport Delay Enhancements
The V6.3 (R14SP3) Real-Time Workshop software supports new Simulink
enhancements to the Variable Transport Delay block. Prior to V6.3 (R14SP3),
the block performed a variable time delay function. The block has been
enhanced to support both variable time and variable transport delays with a
new parameter Select delay type.

• For instances of the block in existing models, Select delay type is set
to Variable time delay to preserve the block’s variable time delay
behavior. In such cases, you can use the block as is, or consider changing
the parameter settings for transport delay behavior.

• The Simulink Library Browser now offers a Variable Time Delay block
and Variable Transport Delay block, which are instances of the original
Variable Transport Delay block. Both blocks have the delay type
parameter, which is preset depending on the type of block you include. In
addition, for the Variable Time Delay block, you can select a parameter for
handling zero delays. For the Variable Transport Delay block, you can
specify a fixed buffer size and absolute tolerance.

For more detail, see the descriptions of the Variable Time Delay and Variable
Transport Delay blocks.

C++ Target Language Support for theReal-Time
Windows Target Product and External Mode
The V6.3 (R14SP3) Real-Time Workshop software supports

• C++ code generation for Real-Time Windows Target™

• The use of external mode with executables it generates from C++ source
files

For more information on C++ target language support, see “Support for C and
C++ Code Generation” in the Real-Time Workshop documentation.

67

Real-Time Workshop® Release Notes

Rapid Simulation Target Enhanced for Use with the
Distributed Computing Toolbox Product
The Rapid Simulation (RSim) target has been enhanced such that RSim
executables that specify a variable step solver do not check out a Simulink
license when run by a worker executing a task created by the Distributed
Computing Toolbox™ product.

Simulink Model and MATLAB Desktop Window
Interaction Enhanced
In V6.3 (R14SP3) of the Real-Time Workshop product, the interaction between
Simulink model and MATLAB desktop windows during code generation has
been enhanced such that the window layering and input focus during code
generation on Microsoft Windows systems matches that of Linux systems.

Prior to V6.3 (R14SP3), if you had a Simulink model window on top of the
MATLAB desktop window on a Windows system, the MATLAB desktop
window would move on top of the model window when you generated code
for that model. When code generation was complete, the MATLAB desktop
window would retain input focus. This behavior intentionally differed from
the behavior on Linux systems, which kept the model window on top.

Customizations to Built-In Blocks
The MathWorks recommends that you not customize built-in blocks provided
as part of the Simulink product even though the capability exists to do so.

Compatibility Considerations
Customizations that you make to built-in Simulink blocks might not be
applied during the code generation process and can lead to unpredictable
results.

Use slbuild Instead of rtwgen
The Target Language Compiler documentation for V6.2 (R14SP2) and earlier
recommends using the rtwgen and tlc commands together to create targets
and generate code. Instead, you should use the slbuild command.

68

Version 6.3 (R14SP3) Real-Time Workshop® Software

Compatibility Considerations
The rtwgen command is not intended for direct use, and upgrading the
Real-Time Workshop product may cause code that uses the command to fail.
Existing code that uses rtwgen should change to use slbuild instead, and
new code should use slbuild exclusively. The syntax for slbuild is

slbuild('model'[,'TargetType'])

Use of the tlc command is unaffected by this change.

Model Hardware Configuration Parameters Now
Honor Device Type Restrictions
Prior to V6.3 (R14SP3), the Real-Time Workshop software allowed you to use
set_param to modify model hardware configuration settings such that they
did not conform to device type restrictions. In V6.3 (R14SP3), the Real-Time
Workshop software honors device type requirements associated with the
following configuration parameters:

ProdBitPerLong
ProdBitPerChar
ProdBitPerInt
ProdBitPerShort
ProdIntDivRoundTo
ProdShiftRightIntArith
ProdWordSize
ProdEndianess
TargetBitPerLong
TargetBitPerChar
TargetBitPerInt
TargetBitPerShort
TargetIntDivRoundTo
TargetShiftRightIntArith
TargetWordSize
TargetEndianess

If you attempt to reset of one of these parameters, the Real-Time Workshop
build process returns an error.

69

Real-Time Workshop® Release Notes

Compatibility Considerations
If you set model parameters programmatically, check for and remove
instances of set_param that specify the preceding parameters.

rem Function No Longer Supports Tunable Arguments
In V6.3 (R14SP3), the rem function no longer supports tunable parameters
when used with the Real-Time Workshop software.

Compatibility Considerations
If you use tunable parameters with the rem function, the Real-Time Workshop
build process inlines the equivalent numeric value into the generated code
in place of the tunable expression.

Block Libraries, RSim Target Executables, and
MAT-Files
You can use the Real-Time Workshop product to rebuild an RSim target
executable for a model that you previously created with blocks provided in
an earlier release.

Compatibility Considerations
Block libraries for V6.3 (R14SP3) are not compatible with block libraries
provided in earlier releases. Consequently, starting with V6.3 (R14SP3) , if
you rebuild an RSim target executable as noted above, you cannot use the
-p option to run the rebuilt executable with a new MAT-file. To use new
MAT-files, you need to replace the blocks in the model with blocks provided in
the R14SP3 block libraries

Documentation Enhancements
The following areas of the Real-Time Workshop documentation have been
corrected or enhanced:

• Help button on Real-Time Workshop pane and subpanes of the
Configuration Parameters dialog box — displays help that is specific to
the pane or subpane that is active

70

Version 6.3 (R14SP3) Real-Time Workshop® Software

• Example index — expanded

• Model reference tutorial

• “Code Generation and the Build Process” — reorganized to reflect workflow
and make key topics more accessible

• “Controlling the Location and Naming of Libraries During the Build
Process” — added as a new topic

• “Tunable Expressions in Masked Subsystems”

• “Profiling Generated Code” — added as a new topic

• “Reusable Code and Referenced Models”

• “Sharing Utility Functions”

• “Data Transfer Assumptions” for rate transitions

• “Writing Noninlined S-Functions”

• “Build Support for S-Functions”

• “Checksums and the S-Function Target” — added as a new topic

• “Specifying New Signal Data File for a From File Block” when running a
rapid simulation

• “Generating ASAP2 and C API Files” — added as a new topic

• “Simulink Block Support” — new reference listing Real-Time Workshop
and Real-Time Workshop Embedded Coder block support for blocks
available in Simulink

• Target Language Compiler documentation

71

file:///B:/matlab/doc/src/toolbox/rtw/rtw_example_index.html

Real-Time Workshop® Release Notes

Version 6.2.1 (R14SP2+) Real-Time Workshop Software
This table summarizes what’s new in V6.2.1 (R14SP2+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
at Web site

No

72

http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2%2B
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2%2B

Version 6.2 (R14SP2) Real-Time Workshop® Software

Version 6.2 (R14SP2) Real-Time Workshop Software
This table summarizes what’s new in V6.2 (R14SP2):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation
at Web Site

Yes
Details below

No Bug Reports
at Web site

No

New features and changes introduced in this version are

• “Model Advisor Enhancements” on page 73

• “Rate Transition Block Enhancements” on page 75

• “Data Store Read Block Enhancement” on page 75

• “C++ Target Language Support” on page 76

• “Support for Open Watcom 1.3 Compiler” on page 78

• “New Configuration Option for Optimizing Floating-Point to Integer Data
Type Conversions” on page 78

• “Task Priority Block Parameters Renamed for Consistency” on page 79

• “New RSim Target Configuration Option” on page 79

• “LibManageAsyncCounter Function Added to asynclib.tlc Library” on
page 80

• “Enhanced Documentation on Integrating Legacy and Custom Code with
Generated Code” on page 80

• “Documentation Enhancements” on page 81

Model Advisor Enhancements
The Model Advisor analyzes Simulink models for optimal use of Simulink for
simulation and code generation. You can customize the analysis and resulting
report by selecting the checks that you want the Model Advisor to perform.
The Real-Time Workshop V6.2 (R14SP2) product enhances the Model Advisor

73

http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2
http://www.mathworks.com/support/bugreports/?product=RT&release;=R14SP2

Real-Time Workshop® Release Notes

by adding several new checks and grouping checks based on their application
for simulation or code generation.

The Model Advisor dialog box now appears as follows:

For more information on the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

74

Version 6.2 (R14SP2) Real-Time Workshop® Software

Rate Transition Block Enhancements
The Rate Transition block has been enhanced to support:

• Automatic insertion for transitions to or from asynchronous tasks. If you
select the Automatically handle data transfers between tasks on the
Solvers pane of the Configuration Parameters dialog, Simulink detects
rate transitions and inserts Rate Transition blocks automatically to handle
them for asynchronous and periodic tasks. Prior to Version 6.2, automatic
block insertion for asynchronous tasks was not supported. For details,
see “Rate Transition Block Options”.

• Automatic insertion for single-tasking execution mode. If you select
the Automatically handle data transfers between tasks, Simulink
detects rate transitions inserts Rate Transition blocks automatically for
models that execute in single-tasking or multitasking mode. Prior to V6.2
(R14SP2), automatic block insertion for single-tasking execution mode
was not supported. For details, see “Rate Transitions and Asynchronous
Blocks”.

• Asynchronous rates when no priority is specified. You can set the block to
one of two modes: unprotected, or data integrity with no determinism.
Prior to V6.2 (R14SP2), the Rate Transition block did not ensure data
integrity for asynchronous rates when the priority was not set. For details,
see “Rate Transitions and Asynchronous Blocks”.

Data Store Read Block Enhancement
The code that the Real-Time Workshop build process generates for the Data
Store Read block has been optimized. Prior to this V6.2 (R14SP2), the code
generated for this block would copy the value of the block to a temporary
variable. In V6.2 (R14SP2), the Real-Time Workshop build process eliminates
the use of the temporary variable, if possible.

Consider the following model:

75

Real-Time Workshop® Release Notes

A section of the code generated for this model, using an earlier version of the
Real-Time Workshop product would appear as follows:

/* local block i/o variables */

real_T rtb_DataStoreRead;

/* DataStoreWrite: '/Data Store Write' incorporates:
* Inport: '/In1'
*/

mdsm_opt_DWork.A = mdsm_opt_U.In1;

/* DataStoreRead: '/Data Store Read' */
rtb_DataStoreRead = mdsm_opt_DWork.A;

/* Outport: '/Out1' */
mdsm_opt_Y.Out1 = rtb_DataStoreRead;

Note the value of mdsm_opt_DWork.A is stored in the temporary variable
rtb_DataStoreRead.

The following code fragment shows the comparable section of code generated
by this release of the Real-Time Workshop product. The temporary variable
rtb_DataStoreRead is no longer used.

/* DataStoreWrite: '/Data Store Write' incorporates:
* Inport: '/In1'
*/

mdsm_opt_DWork.A = mdsm_opt_U.In1;

/* Outport: '/Out1' incorporates:
* DataStoreRead: '/Data Store Read'
*/

mdsm_opt_Y.Out1 = mdsm_opt_DWork.A;

C++ Target Language Support
In V6.2 (R14SP2), the Real-Time Workshop product introduces support
for generating C++ code. The primary use for this feature is to facilitate
integration of generated code with legacy or custom user code written in C++.

76

Version 6.2 (R14SP2) Real-Time Workshop® Software

For information on using this feature, see the following topics in the
Real-Time Workshop documentation:

• “Choosing and Configuring a Compiler”

• “Configuring the Target Language for Generated Code”

• “Integrating C and C++ Code”

For a demo, enter sfcndemo_cppcount in the MATLAB Command Window.
For a Stateflow example, enter sf_cpp.

Limitations

• Microsoft Visual C and Microsoft Visual C++ and GNU C/C++ have been
fully tested and are fully supported on 32–bit Microsoft Windows and Linux
platforms. However, Version 6.2 provides Beta C++ support only for the
Watcom, Borland, and Intel C/C++ compilers. These compilers have not yet
been fully evaluated for compatibility with MathWorks products.

• The Real-Time Workshop product provides Beta support for C++ code
generation for all blockset products. C++ code generation for the blockset
products has not yet been fully evaluated.

• the Real-Time Workshop software does not support C++ code generation
for the following:

Embedded Target for Infineon C166 Microcontrollers
Embedded Target for Motorola MPC555
Embedded Target for Motorola HC12
Embedded Target for OSEK/VDX
Embedded Target for TI’s C2000 DSP
Embedded Target for TI’s C6000 DSP
Real-Time Windows Target
SimDriveline
SimMechanics
SimPowerSystems
xPC Target

• The Real-Time Workshop build process does not support the use of external
mode with executables it generates from C++ source files.

77

Real-Time Workshop® Release Notes

• When using the Model Reference feature, you cannot generate C code for
the parent model and C++ code for models that refer to the parent model.
However, you can generate C or C++ for both the parent and referring
models, or C++ code for the parent model and C code for referring models.

• The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

- Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

- Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for Open Watcom 1.3 Compiler
V6.2 (R14SP2) provides Beta support for the Open Watcom 1.3 compiler. The
compiler has not yet been fully evaluated for compatibility with MathWorks
products. However, the support files necessary for you to use the compiler
with MATLAB and the MATLAB® Compiler™ are available. To configure
the compiler, use the mex -setup function. Full support will be available in
a future release.

New Configuration Option for Optimizing
Floating-Point to Integer Data Type Conversions
A new option, Remove code from floating-point to integer conversions
that wraps out-of-range values, has been added to the Optimization
pane of the Configuration Parameters dialog box that you can use to increase
the efficiency of generated code that represents floating-point to integer or
fixed-point data type conversions. The option removes code that ensures that
execution of the generated code produces the same results as simulation when
out-of-range conversions occur. This reduces the size and increases the speed
of the generated code at the cost of potentially producing results that do not
match simulation in the case of out-of-range values.

Consider using this option if code efficiency is critical to your application and
the following conditions are true for at least one block in the model.

78

Version 6.2 (R14SP2) Real-Time Workshop® Software

• Computing the block’s outputs or parameters involves converting
floating-point data to integer or fixed-point data

• The block’s Saturate on integer overflow option is disabled

For more information, see “Optimizing Code Resulting from Floating-Point to
Integer Conversions” in the Real-Time Workshop documentation.

Task Priority Block Parameters Renamed for
Consistency
The Effective priorities parameter for the Async Interrupt block and Task
priority parameter for the Task Sync block are renamed Simulink task
priority. In both cases, the Rate Transition block uses the parameter to
generate the appropriate high-to-low or low-to-high priority transition code.

New RSim Target Configuration Option
A new option, Force storage classes to AUTO, has been added to the
Real-Time Workshop>RSim Target pane of the Configuration Parameters
dialog box. The option is on by default and forces all storage classes to
Auto. If your application requires the use of other storage classes, such a
ExportedGlobal or ImportedExtern, turn this option off. The new option
appears in the Storage Classes section as shown in the next figure.

79

Real-Time Workshop® Release Notes

For more information, see “Configuring and Building a Model for Rapid
Simulation”.

LibManageAsyncCounter Function Added to
asynclib.tlc Library
The function LibManageAsyncCounter has been added to the asynclib.tlc
TLC library. This function determines whether an asynchronous task needs a
counter and manages its own timer.

Enhanced Documentation on Integrating Legacy and
Custom Code with Generated Code
Documentation on integrating legacy and custom code with generated code
has been enhanced.

80

Version 6.2 (R14SP2) Real-Time Workshop® Software

• A new section, “Integrating Legacy and Custom Code”, summarizes the
mechanisms available for integrating Real-Time Workshop generated code
into an existing code base or integrating existing code into Real-Time
Workshop generated code. In the later scenario, integration can be either
block based or model based. The new summary can help you evaluate and
choose a mechanism that best meets your application requirements and
directs you to other areas of the documentation for implementation details.

• The section “Using the rtwmakecfg.m API to Customize Generated
Makefiles” discusses new fields in the rtwmakecfg.m API that support the
Real-Time Workshop build process for S-functions.

• A new section, “Build Support for S-Functions”, discusses the different
ways of adding build information to the Real-Time Workshop build process.

Documentation Enhancements
The following areas of the Real-Time Workshop documentation have been
corrected or enhanced:

• Integrating custom and legacy code

• References to and screen captures showing new and modified Configuration
Parameter dialog box options

• Descriptions of MaxStackSize and MaxStackVariableSize variables

• Limitations on tunable expressions

• Limitation on Stateflow outputs (removed)

• Symbolic naming conventions for signals in generated code as documented
in “Working with Data Structures”

• Parameter tuning using MATLAB commands

• How to avoid parameter configuration conflicts related to storage classes

• Example for user-defined block state names

• Parameter configuration quick reference diagram (was missing from HTML
output)

• Data type considerations for tunable workspace parameters

• Definitions of top model and reference model in the context of model
referencing

81

Real-Time Workshop® Release Notes

• Deletion of user *.c files from the Real-Time Workshop build directory

• Conditions that need to be met for a block to be considered for dead code
elimination

• Writing S-functions that specify sample time inheritance

• Use of ssSetNeedAbsoluteTime or ssSetNeedElapseTime in S-functions
for accessing timers

• Optimizing with expression folding

• References to the Data Object Wizard (DOW) in the context of using ASAP2

• C API for S-Functions

• External mode parameter descriptions

82

Version 6.1 (R14SP1) Real-Time Workshop® Software

Version 6.1 (R14SP1) Real-Time Workshop Software
This table summarizes what’s new in V6.1 (R14SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed bugs No

Changes from the Previous Release
The behavior of the source block dialog has changed. Note that opening a
dialog for a source block causes the Simulink simulation to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog to have the changes take effect and allow Simulink to continue.

83

Real-Time Workshop® Release Notes

Version 6.0 (R14) Real-Time Workshop Software
This table summarizes what’s new in V6.0 (R14):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are organized by these
topics:

• “Tornado Support for VxWorks Target” on page 85

• “User Interface and Configuration Enhancements” on page 85

• “Support for New Simulink Model Referencing (Model Block) Feature”
on page 91

• “Signal, Parameter Handling, and Interfacing Enhancements” on page 93

• “External Mode Enhancements” on page 99

• “Code Customization Enhancements” on page 102

• “Timing-Related Enhancements” on page 108

• “GRT and ERT Target Unification” on page 112

• “Underscores No Longer Replace Spaces in Identifiers for Multi-Word
Block Names” on page 122

• “Global Data Structure Identifiers for Targets Now Incorporate Model
Name” on page 122

• “Support for Simulink Configuration Set Feature” on page 123

• “Hardware Configuration Parameters” on page 124

• “Enhancements and Changes that Affect Custom Targets” on page 125

84

Version 6.0 (R14) Real-Time Workshop® Software

• “Shared Utilities Directory and the Build Process” on page 127

• “Tornado Target Requires Macro in Template Make File” on page 130

• “Custom Storage Classes Can No Longer Be Used with GRT Targets” on
page 131

• “Target Language Compiler Enhancements and Changes” on page 132

• “Documentation Enhancements” on page 134

Tornado Support for VxWorks Target
In V6.0 (R14), the Real-Time Workshop product supports Tornado® Version
2.x, which targets VxWorks® 5.x.

User Interface and Configuration Enhancements

• “New Model Explorer and Configuration Parameters Dialogs for Controlling
Code Generation” on page 85

• “Generated Code Report Integrated into Model Explorer” on page 87

• “Model Advisor Helps You to Configure and Optimize Targets” on page 89

• “Real-Time Workshop Software Now Supports Intel Compiler” on page 90

New Model Explorer and Configuration Parameters Dialogs
for Controlling Code Generation
This release of the Simulink product features a new user interface for
simulation and code generation, called Model Explorer, which replaces the
Simulation Parameters dialog. When you select Model Explorer from
the Tools menu, the Model Explorer opens in a new window containing
three panes:

85

Real-Time Workshop® Release Notes

The Model Explorer features three resizable, scrolling panes:

• Model Hierarchy pane

• Contents pane

• Dialog pane

For more information on the Model Explorer, see “The Model Explorer” in
the Simulink documentation.

You can also control configurations with the standalone Configuration
Parameters dialog. To activate this interface, a model must be open. You
can summon this interface in any of three equivalent ways:

• Choose Configuration Parameters from the Simulation menu.

• Choose Real-Time Workshop -> Options from the Tools menu.

• Type Ctrl+E.

86

Version 6.0 (R14) Real-Time Workshop® Software

The Configuration Parameters dialog with the Optimization pane
selected is shown in the next figure.

For details on configuration parameters for code generation, see “Choosing
and Configuring Your Target”,“Adjusting Simulation Configuration
Parameters for Code Generation”, and “Configuring Real-Time Workshop
Code Generation Parameters” in the Real-Time Workshop documentation.

Generated Code Report Integrated into Model Explorer
You can now browse files generated by the Real-Time Workshop, Real-Time
Workshop Embedded Coder, and other products directly in the Model
Explorer. This capability supplements HTML code generation reporting,
which was available in earlier releases.

When you generate code, or open a model that has generated code for its
current target configuration in your working directory, theModel Hierarchy
pane of Model Explorer contains a node named Code for model. Under that
node are other nodes, typically called Top Model and Shared Code.

87

Real-Time Workshop® Release Notes

When you click Top Model, the Contents of pane lists source code files in the
build directory of each model that is currently open. The next figure shows
code for the vdp model.

In this example, the file ./vdp_grt_rtw/vdp.c is being viewed. To view any
file in the Contents of pane, click it once.

88

Version 6.0 (R14) Real-Time Workshop® Software

The views in the dialog pane are read-only. The code listings in that pane
contain hyperlinks to functions and macros in the generated code. A hyperlink
for the file being viewed sits above it. Clicking it opens that file in a text
editing window where you can modify its contents. This is not something you
typically do with generated source code, but in the event you have placed
custom code files in the build directory, you can edit them as well in this
fashion.

If an open model contains Model blocks, and if generated code for any of these
models exists in the current slprj directory, nodes for the referenced models
appear in the Model Hierarchy pane one level below the node for the top
model. Such referenced models do not need to be open for you to browse and
read their generated source files.

The node directly underneath the Top Model node is named Shared Code. It
collects files in the appropriate ./slprj/target/_sharedutils subdirectory,
containing shared fixed-point utility code, if any exists.

The structure and contents of slprj directories are described in “Project
Directory Structure for Model Reference Targets” in the Real-Time Workshop
documentation.

Model Advisor Helps You to Configure and Optimize Targets
The Model Advisor (formerly called Model Assistant) is a tool that helps you
configure any model to optimally achieve code generation objectives. Using it,
you can quickly configure a model for code generation, and identify aspects
of your model that impede production deployment or limit code efficiency.
Clicking the icon labeled Advice on model in the Model Hierarchy pane
launches the Model Advisor. This node is directly below the Code for model
node, as the preceding figure shows. Clicking the Advice node causes the
dialog pane to be labeledModel Advisor, and to contain a link, Start model
advisor. When you click that link, Model Advisor opens a separate HTML
window with a set of button and check box controls.

Another way to invoke Model Advisor is to type the following command in the
MATLAB Command Window, specifying the name of model.

ModelAdvisor('model')

89

Real-Time Workshop® Release Notes

If the model (assumed to be on the MATLAB path) is not currently open,
the Model Advisor opens it.

The following figure shows a Model Advisor report:

See “Getting Advice About Optimizing Models for Code Generation” in the
Real-Time Workshop documentation for more information.

Real-Time Workshop Software Now Supports Intel Compiler
The Real-Time Workshop software now includes support for the Intel compiler
(Version 7.1 for Microsoft Windows). The Intel compiler requires Microsoft
Visual C and Microsoft Visual C++ Version 6.0 or higher to be installed.

90

Version 6.0 (R14) Real-Time Workshop® Software

Support for New Simulink Model Referencing (Model
Block) Feature
The new Model block in the Simulink library allows one model to include
another model as if it were a block. This feature, called model reference, works
by generating code for included models that the parent model executes from
a binary library file. In this release, Model reference works on all UNIX®
and Linux platforms (using the gcc compiler), and on Microsoft Windows PC
platforms (using the lcc and Visual C++® compilers).

We call models that include Model blocks top models. Model referencing uses
incremental loading. When you open a top model, any models to which it
refers are not loaded into memory until they are needed or you open them.

Note To take advantage of incremental model loading, models called from
Model blocks must be saved at least once with Simulink V6.0 (R14). Top and
referenced models must have Inline parameters set on.

When running simulations, models are included in other models by generating
code for them in a project directory and creating a static library file called
a simulation target (sometimes referred to as a SIM target). When the
Real-Time Workshop build process generates code for referenced models, it
follows a parallel process to create whatever target (for example, GRT) you
have specified (sometimes generically referred to as Real-Time Workshop
targets). The Real-Time Workshop build process also stores the generated
code in the project directory, although generated code for parent models is
stored (as in previous releases) in a build directory at the same level as the
model reference project directory.

In addition to incremental loading, the model referencing mechanism employs
incremental code generation. This is accomplished by comparing the date,
and optionally, the structure of model files of referenced models with those
for their generated code to determine whether it is necessary to regenerate
model reference targets. You can also force or prevent code generation via the
diagnostic setting for Rebuild options on the Model Referencing pane of
the Configuration Parameters dialog.

91

Real-Time Workshop® Release Notes

You can learn more about how Model blocks work and generate code by
running the following demos:

• mdlref_basic — General demonstration of using Model blocks

• mdlref_paramargs — Passing parameters to referenced models

• mdlref_bus — Using bus objects to communicate signals to referenced
models

• mdlref_conversion — Automatically converting atomic subsystems in
models to models called with Model blocks.

For more information on generating code for referenced models, including
using mdlref_conversion, see “Generating Code for Model Referencing”
and “Generating Code for a Referenced Model” in the Real-Time Workshop
documentation.

Compatibility Considerations for Custom Targets
If you want to adapt a custom target for code generation compatibility with
the model reference features, you need to modify the target’s system target
file (STF) and template makefile (TMF).

General Considerations.

• A model reference compatible target must be derived from the ERT or
GRT targets.

• When generating code from a model that references another model, both
the top-level model and the referenced models must be configured for the
same code generation target.

• Note that the External mode option is not supported in model reference
Real-Time Workshop target builds. If the user has selected this option, it
is ignored during code generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in “Shared Utilities Directory and
the Build Process” on page 127.

92

Version 6.0 (R14) Real-Time Workshop® Software

System Target File Modifications. Your STF must implement a
SelectCallback function (see “New SelectCallback Function for System
Target Files” on page 127). Your SelectCallback function must declare
model reference compatibility by setting the ModelReferenceCompliant flag.

The callback is executed if the function is installed in the SelectCallback
field of the rtwgensettings structure in your STF. The following code installs
the SelectCallback function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

Your callback should set the ModelReferenceCompliant flag as follows.

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant', 'on');

slConfigUISetEnabled(hDlg, hSrc, 'ModelReferenceCompliant', false);

Template Makefile Modifications. In addition to the TMF modifications
described in “Shared Utilities Directory and the Build Process” on page
127, you must modify your TMF variables and rules. See “Providing Model
Referencing Support in the TMF” in the Real-Time Workshop Embedded
Coder documentation for instructions.

Signal, Parameter Handling, and Interfacing
Enhancements

• “New C API for Accessing Model Block Outputs and Parameter Data” on
page 94

• “Back-Propagating Auto, Test-pointed Signal Labels Through Subsystem
Output Ports” on page 96

• “Declaring Wide Signals, States, and Parameters as
ImportedExternPointer” on page 96

• “Bus Creator Blocks Now Can Emit Structures” on page 97

• “New Options for Controlling Resolution of Signal Objects for Named
Signals and States” on page 98

• “CustomStorageClass and StorageClass Properties Initialized Differently”
on page 98

93

Real-Time Workshop® Release Notes

New C API for Accessing Model Block Outputs and Parameter
Data
C API is a target-based Real-Time Workshop feature that provides access to
global block outputs and global parameters in the generated code. Using the
C API, you can build target applications that log signals, monitor signals and
tune parameters while the generated code executes.

In previous releases, to access model parameters via the C API, a
model-specific parameter mapping file, model_pt.c was generated. Similarly,
to access the BlockSignals, model_bio.c is generated. The new C API
improves the efficiency and capability of the interface while reducing its code
size. In addition, the new API supports:

• Referenced models

• Fixed-point data

• Complex data

• Reusable code

The new interface eliminates redundant fields and also improves consistency
between signal and parameter structures. For example, previously the data
name was char_T* for signals but was uint_T for parameters.

The C API provides a smaller memory footprint. This is achieved by mapping
information common to signals and parameters in smaller structures. An
index into the structure map is provided in the actual signal or parameter
structure. This allows the sharing of data across signals and parameters.

When you select the C API feature and generate code, the Real-Time
Workshop build process generates two additional files, model_capi.c and
model_capi.h, where model is the name of the model. The Real-Time
Workshop build process places the two C API files in the build directory, based
on settings in the Configuration Parameters dialog box. The model_capi.c
file contains information about global block signals and global parameters
defined in the generated code. The model_capi.h file is an interface header
file between the model source code and the generated C API. You can use the
information in these C API files to create your application. The next figure
illustrates generated files.

94

Version 6.0 (R14) Real-Time Workshop® Software

For details on how to use the C API, see “Data Exchange APIs” in the
Real-Time Workshop documentation.

Compatibility Considerations. The old C API is still available, but at
some point will be eliminated. The following table compares the files in the
two versions:

C API Files New C API Files Old C API Files

Data structure
interface

Unified interface for
signals and parameters:

/rtw/c/src/rtw_capi.h

Signals Interface:

/rtw/c/src/bio_sig.h

Parameters Interface:

/rtw/c/src/pt_info.h

RTModel C API
Interface

/rtw/c/src/rtw_modelmap.h/rtw/c/src/mdl_info.h

TLC files /rtw/c/tlc/mw/capi.tlc /rtw/c/tlc/mw/biosig.tlc

/rtw/c/tlc/mw/ptinfo.tlc

The file rtw_modelmap.h defines structures for mapping data from the
rtModel structure. The file rtw_capi.h provides macros for accessing the
rtModel.

95

Real-Time Workshop® Release Notes

Note Because the data structures used for the different APIs can conflict, you
can generate either C API or external mode interface code, but not both at
once. The same holds true for ASAP2 interface code, a third data exchange
option available for ERT and GRT targets.

Back-Propagating Auto, Test-pointed Signal Labels Through
Subsystem Output Ports
If a signal exiting an output port of a subsystem has a storage class other than
auto, The Real-Time Workshop software internally propagates the label on
that signal backwards into the subsystem so that the code generated for the
subsystem uses that signal label, which is defined outside the subsystem.

Compatibility Considerations. Before this release, signal labels were not
back-propagated when the signal’s storage class was auto and it also was
test-pointed. Signal labels are now also back-propagated the if the signal is
test-pointed.

Declaring Wide Signals, States, and Parameters as
ImportedExternPointer
If your model declares the storage class of a signal, state, or parameter
as ImportedExternPointer, your code must define an appropriate pointer
variable.

Compatibility Considerations. In V6.0 (R14), whenever a signal state or
parameter is wide, you must define the variable as a pointer to an array. In
previous versions, an array of pointers was assumed. Here are the changes:

Width Previous Versions V6.0 (R14)

scalar double *x1 double *x1

wide double *x2[] double *x2

The legacy code could define and initialize data as follows:

double x1_data;
double *x1 = &x1_data;

96

Version 6.0 (R14) Real-Time Workshop® Software

double x2_data[10];
double *x2 = x2_data;

This change enables wide data declared as ImportedExternPointer to occupy
contiguous memory locations, making this storage class useful in more
contexts than previously possible.

Bus Creator Blocks Now Can Emit Structures
In past releases, you could not assign a storage class to the output of a Bus
Creator block. If you select the block’s new parameter Output as structure,
the output of the block can be assigned a storage class. This enables bus
signals to occupy contiguous memory. When you select this parameter, you
must specify a Simulink Bus object. You can make and modify bus objects
(class Simulink.Bus) using the Bus Editor. Type buseditor in the MATLAB
Command Window. An example Bus Creator dialog for a block that outputs a
three-element structure is shown in the next figure.

For details on working with bus and other Simulink data objects, see the
“Working with Data” in the Simulink documentation.

97

Real-Time Workshop® Release Notes

New Options for Controlling Resolution of Signal Objects for
Named Signals and States
In prior releases, The Real-Time Workshop build process attempted to resolve
all signal objects in a model. Checking all named signals and states was
inefficient, complicated error checking, and now has the potential to cause
problems for incremental code generation for referenced models. To address
these concerns, the current release provides following enhancements:

• Ports and blocks with discrete state now have a setting to indicate whether
or not the port/block requires that a signal label be resolved.

• Models have a parameter to control signal resolution. This option is located
on the Diagnostics/Data Integrity pane of the Configuration Parameters
dialog box.

• A utility function, disableautosignalresolution, is available for
converting existing models (that depended on implicit signal label
resolution) to the new, more efficient approach.

CustomStorageClass and StorageClass Properties Initialized
Differently
In V6.0 (R14), the Real-Time Workshop product merges functionality
of custom storage classes into the standard Simulink.Parameter and
Simulink.Signal classes.

Compatibility Consideration. When you instantiate the
Simulink.CustomParameter and Simulink.CustomSignal classes, the
CustomStorageClass and StorageClass properties do not get initialized
the same way they did in V5.0 (R13).

In V5.0 (R13), the properties were initialized as:

CustomStorageClass = 'BitField' (1st item on the list)
StorageClass = 'Custom'

Starting in V6.0 (R14), the properties are initialized as:

CustomStorageClass = 'Default' (1st item on the list)
StorageClass = 'Auto' (custom storage class is ignored)

98

Version 6.0 (R14) Real-Time Workshop® Software

External Mode Enhancements

• “External Mode Changes May Impact Customized Makefiles and Static
Main files” on page 99

• “Floating Scopes Now Work in External Mode” on page 100

• “Serial Transport Mechanism for External Mode on Microsoft Windows”
on page 100

• “Upgrading Custom Transport Layers for External Mode to Single-Channel
Architecture” on page 101

• “New Static Memory Allocation Option for External Mode Code Generation”
on page 101

External Mode Changes May Impact Customized Makefiles
and Static Main files
The grt, ert, grt_malloc, rsim, rtwin, and tornado targets support external
mode. For each of these targets, the template makefiles and the system target
files have been changed. In addition, the main() files for each target have also
been modified (although ert may have a dynamic main, which is not affected).

Compatibility Considerations. If you have customized any of these static
files or their makefiles, merge your version with those in the current release if
you intend to support external mode.

The file matlabroot/rtw/ext_mode/common/ext_main.c has also changed
slightly. In function ExtCommMain, the line

ES = (ExternalSim *)plhs

was changed to

ES = (ExternalSim *)plhs[0]

For xPC Target, the same change was made in function mexFunction in the file
matlabroot/toolbox/rtw/targets/xpc/internal/xpc/src/ext_main.c.

If you created your own custom ext_main.c file, you need to merge this
change to be compatible with the corresponding change to Simulink.

99

Real-Time Workshop® Release Notes

Floating Scopes Now Work in External Mode
It is now possible to use Floating Scope blocks in external mode. A new
section in the External Mode pane, Floating scope, contains the following
new options:

• Enable data uploading

Functions as an “arm trigger” button for floating scopes. When the target is
disconnected, it controls whether or not to “arm when connect” the floating
scopes. When already connected, it acts as a toggle button to arm/cancel
trigger.

• Duration

Specifies the duration for floating scopes. By default it is set to auto, which
picks up the value specified in the signal and triggering GUI (which by
default is 1000).

The behavior of wired Scope blocks is unchanged.

Serial Transport Mechanism for External Mode on Microsoft
Windows
The Real-Time Workshop product now provides code to implement both the
client and server side using serial as well as TCP/IP protocols. You can use
the socket-based external mode implementation provided by the Real-Time
Workshop software with the generated code, provided that your target system
supports TCP/IP. Otherwise, use or customize the serial transport layer
option provided.

This design makes it possible for different targets to use different transport
layers. The GRT, GRT malloc, ERT, RSim, and xPC targets support
host/target communication via TCP/IP and RS232 (serial) and TCP/IP
communication. Serial transport is implemented only for Windows 32-bit
architectures.

For details on how to use the serial transport mechanism for external mode,
see “Using the Serial Implementation”.

100

Version 6.0 (R14) Real-Time Workshop® Software

Upgrading Custom Transport Layers for External Mode to
Single-Channel Architecture
In earlier releases, external mode had separate logical channels for
messages and data. In the TCP/IP example source files, these channels were
implemented as separate sockets. Now there is only one logical channel
(socket), which handles both data and messages (both of which are now called
packets).

Compatibility Considerations. Most users will not notice this change.
If, however, you have created your own custom transport layer for external
mode, you must modify it for the single-channel architecture. Here is a
summary of the changes that you may need to make:

On the target side (see example files in matlabroot/rtw/c/src/):

• Rename the function ExtWaitForStartMsgFromHost() to
ExtWaitForStartPktFromHost().

• Replace the functions ExtSetHostData() and ExtSetHostMsg() with
ExtSetHostPkt().

• Rename the function ExtGetHostMsg() to ExtGetHostPkt().

On the host side (see example files in matlabroot/rtw/ext_mode):

• Replace the functions ExtTargetDataPending() and
ExtTargetMsgPending() with ExtTargetPktPending().

• Replace the functions ExtGetTargetData() and ExtGetTargetMsg() with
ExtGetTargetPkt().

• Rename the function ExtSetTargetMsg() to ExtSetTargetPkt().

For complete instructions, see “Creating an External Mode Communication
Channel” in the Real-Time Workshop documentation.

New Static Memory Allocation Option for External Mode Code
Generation
You can now generate code for external mode such that it uses only static
memory allocation ("malloc-free" code). The Static memory allocation
check box on the GRT and ERT target configuration component, enables this

101

Real-Time Workshop® Release Notes

feature and activates an edit field in which you can specify the size of the static
memory buffer used by external mode. The default value is 1,000,000 bytes.

Should you enter too small a value for your application, external mode issues
an out-of-memory error when it tries to allocate more memory than you are
allowed. In such cases, increase the value of Static memory buffer size
and regenerate the code. Determine how much memory you need to make
available, enable verbose mode on the target (by including OPTS="-DVERBOSE"
on the make command line). As it executes, external mode displays the
amount of memory it tries to allocate and the amount of memory available to
it each time it attempts an allocation. Should an allocation fail, you can use
this console log to adjust the value specified for Static memory buffer size.

For more information on this new option, see “External Mode Interface
Options” in the Real-Time Workshop documentation.

Code Customization Enhancements

• “Source Code for User S-Functions Easier to Include” on page 102

• “Custom Code Block Library Enhancements” on page 103

• “Combining User C++ Files with Generated Code” on page 103

• “Preventing User Source Code from Being Deleted from Build Directories”
on page 104

• “Designating Target-Specific Math Functions” on page 104

• “Hook Files Describing Hardware Characteristics No Longer Supported”
on page 105

Source Code for User S-Functions Easier to Include
In prior releases, the Real-Time Workshop build process sometimes failed to
find S-function source files during a build, even if they were on the MATLAB
path, thus aborting the build with an error. This happened because there
were no rules dynamically added to the generated makefile for handling the
directories in which the S-function MEX-files were located.

Now, the Real-Time Workshop build process adds an include path to the
generated makefiles whenever it finds a file named s-function-name.h in

102

Version 6.0 (R14) Real-Time Workshop® Software

the same directory as the S-function MEX-file. This directory must be on the
MATLAB path.

Similarly, the Real-Time Workshop build process adds a rule for the directory
when it finds a file s-function-name.c (or .cpp) in the same directory as the
S-function MEX-file.

This enhancement eliminates the need to copy the S-function source file into
the MATLAB current directory or to create an rtwmakecfg.m file in the
S-function directory.

Custom Code Block Library Enhancements
The Custom Code Block library has been reinstated into the Real-Time
Workshop library. The library has been simplified. You can use the blocks
in subsystems as in top-level models (with minor exceptions). Custom Code
blocks enable you to add your own code fragments to specific functions in the
Real-Time Workshop generated source code and header files. You can include
the user code in Real-Time Workshop target code generated for referenced
models (via Model blocks).

Note that custom code that you include in a configuration set is ignored when
building Accelerator, S-function, and model reference simulation targets.

Combining User C++ Files with Generated Code
It is now possible to incorporate user C++ files into both Real-Time Workshop
and Stateflow builds. The Real-Time Workshop build process itself does not
generate C++ code; it simply enables them to be called and incorporated into
an executable. For examples of how to use this capability, see the following
demos:

• sf_cpp.mdl— accessible through Stateflow Demos in the Help Browser.

• sfcndemo_cppcount.mdl— (in the sfundemos demo suite, accessible from
Help Browser under Simulink > Features > S-Function example.)

103

Real-Time Workshop® Release Notes

Preventing User Source Code from Being Deleted from Build
Directories
In V5.0 (R13), the behavior of the Real-Time Workshop product regarding
handling of user source files in the build directory changed. Previously, any
.c or .h files that you placed in the build directory were not deleted when you
rebuilt targets. Now all foreign source files are deleted by default, but you can
preserve them by following the guidelines given below.

If you put a .c or .h source file in a build directory, and you want to prevent
the Real-Time Workshop build process from deleting it during the TLC code
generation process, insert the string target specific file in the first line
of the .c or .h file. For example,

/* COMPANY-NAME target specific file
*
* This file is created for use with the
* COMPANY-NAME target.
* It is used for ...
*/
...

Make sure target specific file is spelled correctly, and occupies the first
line of the source file.

Compatibility Considerations. In addition, flagging user files in this
manner prevents post-processing them to indent them along with generated
source files. Auto-indenting occurred in previous releases to build directory
files with names having the pattern model_*.c (where * could be any string).
The indenting is harmless, but can cause differences to be detected by source
control software that might trigger unnecessary updates.

Designating Target-Specific Math Functions
Target configurations can expressly specify which floating-point math library
to use when generating code. The Real-Time Workshop build process
uses a switchyard called the Target Function Library (TFL) to designate
compiler-specific versions of math functions. The mappings created in the
TFL allow C runtime library support that is specific to a compiler.

The Real-Time Workshop build process provides three different TFLs:

104

Version 6.0 (R14) Real-Time Workshop® Software

• ansi_tfl_tmw.mat — The ANSI® C library (default)

• iso_tfl_tmw.mat — Extensions for ISO®-C/C99

• gnu_tfl_tmw.mat — Extensions for GNU

You choose among them by setting the Target floating point math
environment option on the Real-Time Workshop/Interface pane of the
Configuration Parameters dialog box. This enables you to specify different
runtime libraries for different configuration sets within a given model.

Selecting ANSI-C provides the ANSI C set of library functions. For example,
selecting ANSI-C would result in generated code that calls sin() whether the
input argument is double precision or single precision. However, if you select
ISO-C, the generated code calls the function sinf(), which is single-precision.
If your compiler supports the ISO-C math extensions, selecting the ISO-C
library can result in more efficient code.

Hook Files Describing Hardware Characteristics No Longer
Supported
The Real-Time Workshop product now provides a menu that includes
more than 20 target processors for the purpose of identifying hardware
characteristics, such as word lengths. In the previous release, this information
was stored in user-supplied hook files, which are no longer supported.

Compatibility Considerations. When you open a preexisting model that
has not been saved using the current version of Simulink, and select the
Hardware Implementation pane of the Configuration Parameters dialog
box, the following set of controls appears:

105

Real-Time Workshop® Release Notes

All but one of the parameters below the Device type menu are grayed out.
This is because these characteristics have been preset for the default target
(32-bit Generic), as well as for several dozen known target processors that
you can select from that menu.

The Real-Time Workshop build process only reads existing hook files
when a model created by the V5.0 (R13) Real-Time Workshop software is
built for the first time in V6.0 (R14) without your having first specified
characteristics of the Current code generation execution hardware
device on the Hardware Implementation pane. If you build a model in
this underspecified state, the Real-Time Workshop software scans the current
directory, then the MATLAB path, for an existing hook file with the name
target_rtw_info_hook.m. If the file is found, its instructions override the
defaults in that section. You can subsequently specify any characteristic
freely. If at any point prior to building the target code you specify Current
code generation execution hardware device, the Real-Time Workshop
build process ignores hook files , as hardware characteristics are now
configured.

When you open a preexisting (before V6.0) model, the Hardware
Implementationpane displays a Configure current execution hardware
device button. This button disappears after you press it once. When code is
generated (Ctrl+B) for the target the model specifies,

• If the target has a hook file, and the Configure current execution
hardware device button has not yet been pressed,

106

Version 6.0 (R14) Real-Time Workshop® Software

- The hook file is executed and configures the fields specifying current code
generation execution hardware device.

- A warning is issued to the user that the hook file was used.

- The Configure current execution hardware device button on the
Hardware configuration dialog box is permanently removed for that
model (assuming that you save the model).

• If the target has a hook file and the Configure current execution
hardware device button has been pressed (removing it),

- Code is generated for the target using the hardware characteristics
for the current code generation execution hardware device (which can
default to those of the final embedded hardware device).

- The hook file for the target is ignored, and is from now on.

- A warning is issued that a hook file exists but was not used.

• If the target has no hook file, no message to that effect is issued, and the
current code generation execution hardware device, if left unspecified,
defaults to MATLAB host computer for target device information. A
message is displayed during code generation to indicate this default.

This second group of Hardware Implementation pane controls governs
how hardware characteristics are handled in generated code. They do not
appear unless the Real-Time Workshop product is installed. Their appearance
varies depending on whether hardware configuration characteristics were
previously specified for the model or not. If they were not, you see a button
(as illustrated in the first of the two preceding figures) labeled Configure
current execution hardware device. This button never again appears for
this model once code has been generated and the model has been saved.

When you click the Configure current execution hardware device
button, it is replaced by a check box labeled None. This box is selected by
default, as shown in the following figure.

107

Real-Time Workshop® Release Notes

If you deselect this box, controls appear for that section that are identical to
the controls for the Embedded Hardware section above, as shown in the
next figure. In this figure, the TI-C6000 processor is selected.

Timing-Related Enhancements

• “Application Lifespan Option Optimizes Timer Data Storage” on page 109

• “Enabling the Rapid Simulation Target to Time Out” on page 109

• “New Asynchronous Block Library” on page 110

108

Version 6.0 (R14) Real-Time Workshop® Software

• “Automatic Slow-to-Fast and Fast-to-Slow Transition Detection for Rate
Transition Block” on page 110

• “Automatic Insertion of Rate Transition Blocks” on page 111

• “Enhanced Absolute and Elapsed Time Computation” on page 111

• “Improved Single-Tasking Code Generation” on page 112

Application Lifespan Option Optimizes Timer Data Storage
The Application lifespan (days) field on the Optimization pane of the
Configuration Parameters dialog box lets you specify how long an application,
which contains blocks that depend on elapsed time, should be able to execute
before timer overflow. Specifying it determines the word size used by timers
in the generated code, and can lower RAM usage.

Application lifespan, when combined with the step size of each task,
determinates data type of integer absolute time for each task, as follows:

• If your model does not require absolute time, this option affects neither
simulation nor the generated code.

• If your model requires absolute time, this option optimizes the word size
used for storing integer absolute time in generated code. This ensures
that timers will not overflow within the lifespan you specify. If you set
Application lifespan (days) to Inf, two uint32 words are used.

• If your model contains fixed-point blocks that require absolute time, this
option affects both simulation and generated code.

Using 64 bits to store timing data enables models with a step size of 0.001
microsecond (10E-09 seconds) to run for more than 500 years, which would
rarely be required. To run a model with a step size of one millisecond (0.001
seconds) for one day would require a 32-bit timer (but it could continue
running for 49 days).

Application lifespan was an ERT-only option in prior releases.

Enabling the Rapid Simulation Target to Time Out
The Rapid Simulation (RSim) Real-Time Workshop target now has a timeout
execution option, -L n. Use this option to enable the RSim executable to abort

109

Real-Time Workshop® Release Notes

if it is taking excessive time. This can happen, for example, in some models
when zero crossings are frequent and minor step size is small.

For more information and an example, see “Setting a Clock Time Limit for a
Rapid Simulation” in the Real-Time Workshop documentation.

New Asynchronous Block Library
A new VxWorks block library (vxlib1) allows you to model and generate code
for asynchronous event handling, including servicing of hardware generated
interrupts, maintenance of timers, asynchronous read and write operations,
and spawning of asynchronous tasks under a real-time operating system
(RTOS).

Although the blocks in the library target a particular RTOS (VxWorks
Tornado), full source code and documentation are provided so that you can
develop blocks supporting asynchronous event handling for your target RTOS.

The new VxWorks block library supports a superset of the functions of the
older Interrupt Templates library. The new library is easier to use, since
special Asynchronous Read and Write blocks are no longer required to handle
rate transitions.

For descriptions of the VxWorks library blocks and information on gaining
access to the library, see“Asynchronous Support” in the Real-Time Workshop
documentation.

Compatibility Considerations. The older Interrupt Templates library
(vxlib) is obsolete. It is provided only to allow models created prior to the
Real-Time Workshop product V6.0 (R14) to continue to operate. If you have
models that use vxlib blocks, The MathWorks recommends that you change
them to use vxlib1 blocks.

Automatic Slow-to-Fast and Fast-to-Slow Transition Detection
for Rate Transition Block
The Rate Transition block has been updated to automatically detect whether
transitions must be slow-to-fast or fast-to-slow, and act appropriately.
Accordingly, the Block Parameters dialog box for the block has been modified
to include only the following four options:

110

Version 6.0 (R14) Real-Time Workshop® Software

• Ensure data integrity during transfer

• Ensure deterministic data transfer

• Outport sample time

• Initial condition

For more information, see “Sample Rate Transitions” in the Real-Time
Workshop documentation.

Compatibility Consideration. Simulink automatically updates all Rate
Transition blocks in a model with this enhancement when you save the model
in V6 (R14).

Automatic Insertion of Rate Transition Blocks
When you set up a model to use a fixed-step solver for multitasking, Simulink
now automatically inserts Rate Transition blocks between periodic tasks
that run at different rates and transfer data. This feature does not apply to
transitions to or from non-periodic (asynchronous) tasks. You can control
whether Simulink inserts Rate Transition blocks automatically with the
Automatically handle data transfers between tasks check box on the
Solver pane of the Configuration Parameters dialog box.

Simulink configures the blocks that it inserts automatically to ensure both
data integrity and deterministic data transfer. As mentioned above, this
feature applies to multitasking models only. Rate Transition blocks that
Simulink inserts automatically do not appear on the model’s block diagram.
Nevertheless, they are implemented as semaphores or double buffers,
depending on the constraints being observed, and affect simulation and code
generation.

For more details, see “Automatic Rate Transition” in the Real-Time Workshop
documentation.

Enhanced Absolute and Elapsed Time Computation
Certain blocks require the value of either absolute time (that is, the time
from the start of program execution to the present time) or elapsed time
(for example, the time elapsed between two trigger events). The Real-Time
Workshop product now provides more efficient time computation services

111

Real-Time Workshop® Release Notes

to blocks that request absolute or elapsed time. These timer services are
available to all targets that support the real-time model (rtModel) data
structure. Improvements in the implementation of absolute and elapsed
timers include

• Timers are implemented as unsigned integers in generated code.

• In multirate models, at most one timer is allocated per rate, on an
as-needed basis. If no blocks executing at a given rate require a timer, no
timer is allocated to that rate. This minimizes memory allocated for timers
and significantly reduces overhead involved in maintaining timers.

• Allocation of elapsed time counters for use of blocks within triggered
subsystems is minimized, further reducing memory usage and overhead.

• S-function and TLC APIs let you access timers for use in your S-functions,
in both simulation and code generation.

For more information see “Timing Services” in the Real-Time Workshop
documentation.

Improved Single-Tasking Code Generation
New efficiencies in code generation no longer require code generated for
single-tasking models to test for sample hits in the base rate task. The code
fragment below is an example of such a test in prior versions.

if (rtmIsSampleHit(S,0,tid)) { ...
}

Since the base rate task always has a sample hit, such tests are not needed.
Elimination of this test improves the runtime performance of the generated
code.

GRT and ERT Target Unification
An important goal for both the Real-Time Workshop and Real-Time Workshop
Embedded Coder products in V6.0 (R14) has been target unification. Target
unification includes enhancements to the underlying technology and features
of both products, such that:

112

Version 6.0 (R14) Real-Time Workshop® Software

• Both products use a common backend generated code format. This
enhancement, termed code format unification, has a number of implications
(see “Code Format Unification” on page 113).

• The set of features common to both products is expanded. Some features
and efficiencies formerly exclusive to the Real-Time Workshop Embedded
Coder product and the Embedded Real-Time (ERT) target are now
generally available via the Generic Real-Time (GRT) target. Conversely,
the Real-Time Workshop Embedded Coder software now supports some
features that were previously available only via the GRT target (for
example, support of continuous-time blocks and noninlined S-functions).

In general, the GRT and ERT targets have many more common features,
but the ERT target offers additional controls for common features.

• Conversion from GRT-based targets to ERT-based targets is simplified.

• The ERT and GRT targets are fully backward-compatible with existing
applications.

The following topics provide a high-level overview and comparison of feature
enhancements and compatibility issues that result from target unification in
the Real-Time Workshop product V6.0 (R14) and the Real-Time Workshop
Embedded Coder product V4.0 (R14).

• “Code Format Unification” on page 113

• “Compatibility Considerations for GRT-Based Targets” on page 115

• “Real-Time Workshop and Real-Time Workshop® Embedded Coder Feature
Set Comparison” on page 118

• “Symbol Formatting Options Replaced” on page 120

Code Format Unification
Before discussing code format unification, it is necessary to review the
distinction between a target and a code format.

A target (such as the ERT target) is an environment for generating and
building code intended for execution on a certain hardware or operating
system platform. A target is defined at the top level by a system target file,
which in turn invokes other target-specific files.

113

Real-Time Workshop® Release Notes

A code format (such as Embedded-C or RealTime) is one property of a target.
The code format controls decisions made at several points in the code
generation process. These include whether and how certain data structures
are generated (for example, SimStruct or rtModel), whether or not static
or dynamic memory allocation code is generated, and the calling interface
used for generated model functions. In general, the Embedded-C code format
is more efficient than the RealTime code format. Embedded-C code format
provides more compact data structures, a simpler calling interface, and static
memory allocation. These characteristics make the Embedded-C code format
the preferred choice for production code generation.

In prior releases, only the ERT target and targets derived from the ERT
target used the Embedded-C code format. Non-ERT targets used other code
formats (for example, RealTime or RealTimeMalloc).

In V6.0 (R14, the GRT target uses the Embedded-C code format for backend
code generation. This includes generation of both algorithmic model code and
supervisory timing and task scheduling code. The GRT target (and derived
targets) generates a RealTime code format wrapper around the Embedded-C
code. This wrapper provides a calling interface that is backward-compatible
with existing GRT-based custom targets. The wrapper calls are compatible
with the main program module of the GRT target (grt_main.c). This use of
wrapper calls incurs some calling overhead; the pure Embedded-C calling
interface generated by the ERT target is more highly optimized.

The calling interface generated by the ERT target is described in “Data
Structures, Code Modules, and Program Execution” of the Real-Time
Workshop Embedded Coder documentation. The calling interface generated
by the GRT target is described in “Program Architecture” of the Real-Time
Workshop documentation.

Since the GRT target now uses the Embedded-C code format for backend code
generation, many Embedded-C optimizations are available to all Real-Time
Workshop product users. In general, the GRT and ERT targets have many
more common features, but the ERT target offers additional controls for
common features. The availability of features is now determined by licensing,
rather than being tied to code format.

114

Version 6.0 (R14) Real-Time Workshop® Software

Code format unification simplifies the conversion of GRT-based custom targets
to ERT-based targets. See “Compatibility Considerations for GRT-Based
Targets” on page 115 for a description of target conversion issues.

Compatibility Considerations for GRT-Based Targets
If you have developed a GRT-based custom target, it is simple to make
your target ERT-compatible. By doing so, you can take advantage of many
efficiencies.

There are several approaches to ERT compatibility:

• If your installation does not include a Real-Time Workshop Embedded
Coder license, you can convert a GRT-based target as described in
“Converting Your Target to Use rtModel” on page 116. This enables your
custom target to support all current GRT features, including backend
Embedded-C code generation.

• You can create an ERT-based target, but continue to use your customized
version of grt_main.c module. To do this, you can configure the ERT
target to generate a GRT-compatible calling interface, as described in
“Generating GRT Wrapper Code from the ERT Target” on page 117. This
lets your target support all ERT features without changing your GRT-based
runtime interface. This approach requires that your installation include a
Real-Time Workshop Embedded Coder license.

• If your installation includes a Real-Time Workshop Embedded Coder
license, you can reimplement your custom target as a completely ERT-based
target, including use of an ERT generated main program. This approach
lets your target support all ERT features, without the overhead caused
by wrapper calls.

Note If you intend to use custom storage classes (CSCs) with a custom target,
you must use an ERT target. See “Custom Storage Classes” in the Real-Time
Workshop Embedded Coder documentation for information on CSCs.

For details on how GRT targets are made call-compatible with previous
versions of the Real-Time Workshop product, see “The Real-Time Model Data
Structure” in the Real-Time Workshop documentation.

115

Real-Time Workshop® Release Notes

Converting Your Target to Use rtModel. The real-time model data
structure (rtModel) encapsulates model-specific information in a much more
compact form than the SimStruct. Many ERT-related efficiencies depend on
generation of rtModel rather than SimStruct, including:

• Integer absolute and elapsed timing services

• Independent timers for asynchronous tasks

• Generation of improved C API code for signal and parameter monitoring

To take advantage of such efficiencies, you must update your GRT-based
target to use the rtModel, unless you already did so for V5.0 (R13). The
conversion requires changes to your system target file, template makefile,
and main program module.

To use rtModel instead of SimStruct, make the following changes to the
system target file and template makefile:

• In the system target file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

• In the template makefile, define the symbol USE_RTMODEL. See one of the
GRT template makefiles for an example.

Make the following changes to your main program module (that is, your
customized version of grt_main.c):

• Include rtmodel.h instead of simstruc.h.

• Since the rtModel data structure has a type that includes the model name,
define the following macros at the top of main program file:

#define EXPAND_CONCAT(name1,name2) name1 ## name2

#define CONCAT(name1,name2) EXPAND_CONCAT(name1,name2)

#define RT_MODEL CONCAT(MODEL,_rtModel)

• Change the extern declaration for the function that creates and initializes
the SimStruct to:

116

Version 6.0 (R14) Real-Time Workshop® Software

extern RT_MODEL *MODEL(void);

• Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 14 version
of grt_main.c.

• Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

• The prototypes for the functions rt_GetNextSampleHit,
rt_UpdateDiscreteTaskSampleHits, rt_UpdateContinuousStates,
rt_UpdateDiscreteEvents, rt_UpdateDiscreteTaskTime, and
rt_InitTimingEngine have changed. Change their names to use the prefix
rt_Sim instead of rt_ and then change the arguments you pass into them.

See the V6.0 (R14) version of grt_main.c for the list of arguments passed
into each function.

• Modify all macros that refer to SimStruct to now refer to rtModel.
SimStruct macros begin with the prefix ss, whereas rtModel macros
begin with the prefix rtm. For example, change ssGetErrorStatus to
rtmGetErrorStatus.

Generating GRT Wrapper Code from the ERT Target. The Real-Time
Workshop Embedded Coder software supports the GRT compatible call
interface option. When you select this option, the Real-Time Workshop
Embedded Coder build process generates model function calls that are
compatible with the main program module of the GRT target (grt_main.c).
These calls act as wrappers that interface to ERT (Embedded-C format)
generated code.

This option provides a quick way to use ERT target features with a GRT-based
custom target that has a main program module based on grt_main.c.

See “Code Generation Options and Optimizations” in the Real-Time Workshop
Embedded Coder documentation for detailed information on the GRT
compatible call interface option.

117

Real-Time Workshop® Release Notes

Real-Time Workshop and Real-Time Workshop Embedded
Coder Feature Set Comparison
The approach you should take to achieve ERT compatibility depends on the
features required by your custom target. The following table will help you
decide whether or not you require Real-Time Workshop Embedded Coder
licensed features.

For detailed information about these features, see the Real-Time Workshop
and Real-Time Workshop Embedded Coder documentation.

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder License

rtModel data structure Full rtModel struct
generated.

rtModel is optimized for the
model. Suppression of error
status field, data logging fields,
and in the struct is optional.

Custom storage classes (CSCs) Code generation ignores CSCs;
objects assigned a CSC default
to Auto storage class.

Code generation with CSCs
supported.

HTML code generation report Basic HTML code generation
report.

Enhanced report with
additional detail and
hyperlinks to the model.

Symbol formatting Symbols (for signals,
parameters etc.) are generated
in accordance with hard coded
default.

Detailed control over
generated symbols.

User-defined maximum
identifier length for generated
symbols

Supported Supported

Generation of terminate
function

Always generated. Option to suppress terminate
function.

Combined output/update
function

Separate output/update
functions are generated.

Option to generate combined
output/update function.

118

Version 6.0 (R14) Real-Time Workshop® Software

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder License

Optimized data initialization Not available. Options to suppress generation
of unnecessary initialization
code for zero-valued memory,
I/O ports, etc.

Comments generation Basic options to include or
suppress comment generation.

Options to include Simulink
block descriptions, Stateflow
object descriptions, and
Simulink data object
descriptions in comments.

Module Packaging Features
(MPF)

Not supported. Extensive code customization
features. See the Real-Time
Workshop Embedded Coder
documentation.

Target-optimized data types
header file

Requires full tmwtypes.h
header file.

Generates optimized
rtwtypes.h header file,
including only the necessary
definitions required by the
target.

User-defined types User defined types default to
base types in code generation.

User defined data type
aliases are supported in code
generation.

Simplified call interface Non-ERT targets default to
GRT interface.

ERT and ERT-based targets
generate simplified interface.

Rate grouping Not supported Supported
Auto-generation of main
program module

Not supported; static main
program module provided.

Automated and customizable
generation of main program
module supported. Static main
program also available.

MAT-file logging No option to suppress MAT-file
logging data structures.

Option to suppress MAT-file
logging data structures.

Reusable (multi-instance) code
generation with static memory
allocation

Not supported. Option to generate reusable
code.

119

Real-Time Workshop® Release Notes

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder License

Software constraint options Support for floating point,
complex, and nonfinite
numbers always enabled.

Options to enable or disable
support for floating point,
complex, and nonfinite
number.

Application life span User-specified; determines
most efficient word size for
integer timers. Defaults to
inf.

User-specified; determines
most efficient word size for
integer timers.

Software-in-the-loop (SIL)
testing

Model reference simulation
target can be used for SIL
testing.

Additional SIL testing
support via auto-generation of
Simulink S-Function block.

ANSI C code generation Supported Supported
ISO-C code generation Supported Supported
GNU-C code generation Supported Supported
Generate scalar inlined
parameters

Not supported Supported

MAT-file variable name
modifier

Supported Supported

Data exchange: C API,
External Mode, ASAP2

Supported Supported

Symbol Formatting Options Replaced
This note discusses changes in the way that symbols are generated for

• Signals and parameters that have Auto storage class

• Subsystem function names that are not user-defined

• All Stateflow names

The following Real-Time Workshop model configuration options, all related
to formatting generated symbols, have been removed from the Configuration

120

Version 6.0 (R14) Real-Time Workshop® Software

Parameters dialog box and replaced with a default symbol formatting
specification.

• Prefix model name to global identifiers

• Include System Hierarchy Number in Identifiers

• Include data type acronym in identifier

The components of a generated symbol now include the root model name,
followed by the name of the generating object (signal, parameter, state, and so
on), followed by a unique name mangling string that is generated (if required)
to resolve potential conflicts with other generated symbols.

The length of generated symbols is limited by the Maximum identifier
length parameter specified on the Real-Time Workshop>Symbols pane of
the Configuration Parameters dialog. The default length is 31 characters.
When there is a potential name collision between two symbols, the Real-Time
Workshop software generates a name mangling string. The string has the
minimum number of characters required to avoid the collision. The Real-Time
Workshop build process then inserts the other symbol components. If the
Maximum identifier length is not large enough to accommodate full
expansions of the other components, they are truncated.

Compatibility Considerations. To avoid truncation that can result from
the new default symbol formatting specification, it is good practice to

• Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

• Where possible, increase theMaximum identifier length to accommodate
the length of the symbols you expect to generate.

Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When generating code from
a model that uses model referencing, the Maximum identifier length
must be large enough to accommodate full the root model name and the
name mangling string (if any). A code generation error occurs if Maximum
identifier length is not large enough.

121

Real-Time Workshop® Release Notes

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

The Real-Time Workshop Embedded Coder software provides a Symbol
format field that lets you control the formatting of generated symbols in
much greater detail. See “Code Generation Options and Optimizations” in the
Real-Time Workshop Embedded Coder documentation for more information.

Underscores No Longer Replace Spaces in Identifiers
for Multi-Word Block Names
Prior to V6.0 (R14), the Real-Time Workshop product replaced each space
in a multi-word block name with an underscore (_). For example, Actuator
Model would be Actuator_Model. Starting in V6.0, the spaces in such names
are removed rather than replaced. For example, the identifier for Actuator
Model is generated as ActuatorModel.

Global Data Structure Identifiers for Targets Now
Incorporate Model Name
Global data structures, such as rtB, rtP and rtY have new identifiers in
ERT and GRT generated code. For GRT, these names now include the model
name followed by _B, _P, _Y, and so on. (ERT targets provide you with flexible
naming options as explained in “Symbol Formatting Options Replaced” on
page 120). The construction of identifiers was changed to prevent name
clashes when code for models containing Model blocks is generated and linked.

Compatibility Considerations
If you are interfacing external code to any Simulink global data, you might
need to use the GRT compatible calling interface for ERT-based targets (see
“Generating GRT Wrapper Code from the ERT Target” on page 117 for more
information). The GRT interface enables you to access global data using
the old-style identifiers via a set of macros that map old-style to new-style
identifiers. See “Backwards Compatibility of Code Formats” in the Real-Time
Workshop documentation for details.

122

Version 6.0 (R14) Real-Time Workshop® Software

Support for Simulink Configuration Set Feature

• “Support for New Simulink getActiveConfigSet Function” on page 123

• “New switchTarget Function” on page 123

Support for New Simulink getActiveConfigSet Function
A new function, getActiveConfigSet, provides safe access to option settings
stored in the active configuration set. The function returns an object through
which you can access properties of the model’s active configuration set. The
following example shows how to call getActiveConfigSet to turn the ERT
option Single output/update function off.

cs = getActiveConfigSet(model);
set_param(cs, 'CombineOutputUpdateFcns', 'off');

Compatibility Considerations. In prior releases, it was possible to
access code generation options and other model parameters stored in the
rtwOptions data structure directly, by using get_param and set_param calls.
In the following code excerpt, for example, the value of the ERT Single
output/update function option is changed from on to off.

options = get_param(model, 'RTWOptions');

strrep(options, 'CombineOutputUpdateFcns=1', 'CombineOutputUpdateFcns=0');

set_param(model, 'RTWOptions', options);

If you have written code that accesses the rtwOptions structure directly, as in
the above example, you should update your code to use getActiveConfigSet
instead. Due to changes in underlying data structures, code that accesses
rtwOptions directly, as above, will no longer work correctly.

An alternative and more flexible method for automatic configuration of model
options is available to Real-Time Workshop Embedded Coder users. See
“Auto-Configuring Models for Code Generation” in the Real-Time Workshop
Embedded Coder documentation for more information.

New switchTarget Function
In V6.0 (R14) Simulink models store model-wide parameters and
target-specific data in configuration sets. Every configuration set contains a
component that defines the structure of a particular target and the current

123

Real-Time Workshop® Release Notes

values of target options. Some of this information is loaded from a system
target file when you select a target using the System Target File Browser.
You can configure models to generate alternative target code by copying and
modifying old or adding new configuration sets and browsing to select a new
target. Subsequently, you can interactively select an active configuration from
among these sets (only one configuration set can be active at a given time).

The Real-Time Workshop product has added a new function, switchTarget,
to support configuration sets and enable you to automate target selection from
scripts. Arguments that you pass to the function include a handle to the
model’s active configuration set and a string that specifies a system target file.

For more information, see “Selecting a System Target File Programmatically”
in the Real-Time Workshop documentation.

Hardware Configuration Parameters

Compatibility Considerations
When you open a preexisting model that has not been saved using V6.0 (R14)
of Simulink, and select Hardware in the Configuration Parameters dialog
box, the following set of controls appears:

All but one of the parameters below the Device type menu are grayed out.
This is because these characteristics have been preset for the default target

124

Version 6.0 (R14) Real-Time Workshop® Software

(32-bit Generic), as well as for several dozen known target processors that
you can select from that menu.

In the event that none of the choices listed in the Device Type drop-down
menu is appropriate for your intended hardware target, you can select Custom,
and then set values for the hardware characteristics. Selecting any other
option disables them. The hardware characteristics that you can specify are

• Number of bits — Text fields that specify the number of bits used to
represent types char, short, int, and long. The values specified should
be consistent with the word sizes as defined in the compiler’s limits.h
header file.

• Byte ordering— Specifies whether the target hardware uses Big Endian
(most significant byte first) or Little Endian (least significant byte first)
byte ordering. If left as Unspecified, the Real-Time Workshop build
process generates code to determine the endianness of the target; this is
the least efficient option.

• Shift right on a signed integer as arithmetic shift— ANSI C leaves
the behavior of right shifts on negative integers as implementation
dependent. Use this control to specify how the Real-Time Workshop
software implements right shifts on signed integers in generated code.

The option is selected by default. If your C or C++ compiler handles right
shifts as arithmetic shifts, this is the preferred setting.

- When the option is selected, the Real-Time Workshop software generates
simple efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.

- When the option is cleared, the Real-Time Workshop software generates
fully portable but less efficient code to implement right arithmetic shifts.

Enhancements and Changes that Affect Custom
Targets

Defining and Displaying Custom Target Options
For release 14, extensive improvements and revisions have been made in the
appearance and layout of code generation options and other target-specific
options for Real-Time Workshop targets. If you have developed a custom

125

Real-Time Workshop® Release Notes

target, you should take advantage of the Model Explorer to present target
options to end users.

Compatibility Considerations. To take advantage of the Model Explorer
for presenting target options, you must modify your custom system target file.
If you do not want to make the changes, a mechanism for using the old-style
Simulation Parameters dialog is available for backwards compatibility.

The following figure shows an example of what users would see if you do not
upgrade and the Embedded Target for Motorola HC12 target is selected.

Instead of one Real-Time Workshop>Target tab, this dialog has four:
ERT Code Generation options 1 through 3, External mode options,
and Code Warrior options (not all are visible in the figure). Targets that
have not been updated to use configuration sets will display similar dialogs.
In addition, there is a Launch old simprm dialog button at the bottom of
the dialog. Targets that use the Simulation Parameters dialog to handle
callbacks will work without updating for Model Explorer only if the user uses

126

Version 6.0 (R14) Real-Time Workshop® Software

this button and then builds from the Simulation Parameters dialog. Note
that configuration set dialogs can issue callbacks but handle them differently
than did the Simulation Parameters dialog.

See the Real-Time Workshop Embedded Coder Release Notes for details.

New SelectCallback Function for System Target Files
The V6.0 (R14) API for system target file callbacks provides a new
SelectCallback function for use in system target files. This function is
associated with the target rather than with any of its individual options. If
you implement a SelectCallback function for the target, it is triggered once,
when the user selects the target via the System Target File Browser.

For details on using the selectCallback function, see “Supporting Optional
Features” in the Real-Time Workshop Embedded Coder documentation.

Compatibility Considerations. If you have developed a custom target and
you want it to be compatible with model referencing, you must implement
a SelectCallback function to declare model reference compatibility. See
“Compatibility Considerations for Custom Targets” on page 92 in the
Real-Time Workshop documentation for an example.

Shared Utilities Directory and the Build Process
The shared utilities directory (slprj/target/_sharedutils) typically stores
generated utility code that is common between a top-level model and the
models it references. You can also force the build process to use a shared
utilities directory for a standalone model. See “Project Directory Structure
for Model Reference Targets” in the Real-Time Workshop documentation for
details.

Compatibility Considerations
If you want your target to support compilation of code generated in the shared
utilities directory, several updates to your template makefile (TMF) are
required. Note that support for the shared utilities directory is a necessary,
but not sufficient, condition for supporting Model Reference builds. See
“Compatibility Considerations for Custom Targets” on page 92 to learn about
additional updates that are needed for supporting model reference builds.

127

Real-Time Workshop® Release Notes

The exact syntax of the changes can vary due to differences in the make
utility and compiler/archive tools used by your target. The examples below
are based on the GNU make utility. You can find the following updated TMF
examples for GNU and Microsoft Visual C make utilities in the GRT and
ERT target directories:

• GRT: matlabroot/rtw/c/grt/

- grt_lcc.tmf

- grt_vc.tmf

- grt_unix.tmf

• ERT: matlabroot/rtw/c/ert/

- ert_lcc.tmf

- ert_vc.tmf

- ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.

Note The ERT-based TMFs contain extra code to handle generation of ERT
S-functions and Model Reference simulation targets. Your target does not
need to handle these cases.

Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC = |>SHARED_SRC<|
SHARED_SRC_DIR = |>SHARED_SRC_DIR<|
SHARED_BIN_DIR = |>SHARED_BIN_DIR<|
SHARED_LIB = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities directory location and the source
files in it. A typical expansion in a makefile is

128

Version 6.0 (R14) Real-Time Workshop® Software

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as
in the following expansion.

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the source
files. In the current release, all TMFs actually use the same path, as in the
following expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils
SHARED_BIN_DIR = ../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities
are in use. Then append it to the overall INCLUDES variable.

SHARED_INCLUDES =
ifneq ($(SHARED_SRC_DIR),)
SHARED_INCLUDES = -I$(SHARED_SRC_DIR)
endif
INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

$(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o : $(SHARED_SRC_DIR)/%.c
$(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

129

Real-Time Workshop® Release Notes

7 Provide a rule to create a library of the shared utilities. The following
example is UNIX-based.

$(SHARED_LIB) : $(SHARED_OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created $@ "

8 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)
$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS) $(SHARED_LIB)
$(SYSLIBS)
@echo "### Created executable: $(MODEL)"

9 Remove any explicit reference to rt_nonfinite.c from your TMF. For
example. change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

Note If your target interfaces to a development environment that is not
makefile based, you must make equivalent changes to provide the needed
information to your target compilation environment.

Tornado Target Requires Macro in Template Make File
Tornado 2.2.1 installs standard header files in an include directory under
the target compiler target directory. For example, if you are targeting the
Motorola 68k processor for VxWorks with the GCC 2.96 compiler, Tornado
installs the header files at the following location:

WIND_BASE/host/WIND_HOST_TYPE/lib/gcc-lib/m68k-wrs-vxworks
/gcc-2.96/include

If you are using a version of Tornado lower than 2.2.1, leave the macro
commented out.

130

Version 6.0 (R14) Real-Time Workshop® Software

Compatibility Considerations
To use Tornado 2.2.1 or higher with the Tornado (VxWorks) Real-Time Target,
tornado.tlc, you must enable a macro in template makefile tornado.tmf as
follows:

1 Open matlabroot/rtw/c/tornado/tornado.tmf.

2 Search for TORNADO_TARGET_COMPILER_INCLUDES.

3 Uncomment the macro TORNADO_TARGET_COMPILER_INCLUDES and set it to
the include directory that contains the Tornado standard header files.

Given the path shown above, you would set the macro as follows:

TORNADO_TARGET_COMPILER_INCLUDES =
$(WIND_BASE)/host/$(WIND_HOST_TYPE)/lib/gcc-lib/m68k-wrs-v
xworks/gcc-2.96/include

Although this example shows the macro definition wrapped, you should
include it on a single line.

Custom Storage Classes Can No Longer Be Used with
GRT Targets
In prior releases, it was possible to use custom storage classes with the GRT
target if a Real-Time Workshop Embedded Coder license was available. In
V6.0 (R14), you can no longer use custom storage classes when you generate
code for GRT-based targets.

For information on how GRT and ERT targets now compare, see “Global
Data Structure Identifiers for Targets Now Incorporate Model Name” on page
122. See “Code Generation Options and Optimizations” in the Real-Time
Workshop Embedded Coder documentation for detailed information on the
GRT compatible call interface option.

Compatibility Considerations
If you have a Real-Time Workshop Embedded Coder license and want to build
a model that uses custom storage classes with the GRT target, you should
instead use ERT Target, and enable the GRT compatible call interface
option. This option appears on theReal-Time Workshop>Interfacepane

131

Real-Time Workshop® Release Notes

of the Configuration Parameters dialog box. When you use this option, the
Real-Time Workshop Embedded Coder software generates GRT-compatible
code that can include custom storage classes.

Target Language Compiler Enhancements and
Changes

• “ISSLPRMREF TLC Built-In Supports Parameter Sharing with Simulink”
on page 132

• “New Argument for TLC GENERATE_FORMATTED_VALUE Built-In
Function” on page 132

• “Accessing the Number of Sample Times from TLC for Custom Targets”
on page 133

• “TLCFILES Built-In Now Returns Full Path to Model File Rather Than
Relative Path” on page 133

ISSLPRMREF TLC Built-In Supports Parameter Sharing with
Simulink
To support parameter sharing with Simulink, a new built-in function
(ISSLPRMREF) has been added to the Target Language Compiler. It returns a
Boolean value indicating whether its argument is a reference to a Simulink
parameter or not. Using this function can save memory and time during
code generation. Here is an example:

%if !ISSLPRMREF(param.Value)
%assign param.Value = CAST("Real", param.Value)

%endif

New Argument for TLC GENERATE_FORMATTED_VALUE Built-In
Function
The GENERATE_FORMATTED_VALUE built-in function has a new optional third
argument. The syntax for the function is now

GENERATE_FORMATTED_VALUE(expr, string, expand)

132

Version 6.0 (R14) Real-Time Workshop® Software

The third argument is a Boolean, which when TRUE, causes expr to be
expanded into raw text before being output. expand=TRUE uses much more
memory than the default (FALSE). Set expand=TRUE only if the parameter text
needs to be processed for some reason before being written to disk.

Accessing the Number of Sample Times from TLC for Custom
Targets
In previous release, you could directly access an undocumented TLC
variable, NumSampleTimes, which held the number of periodic (synchronous)
sample times. In the current release, the variable that holds the number
of periodic sample times is called NumSynchronousSampleTimes. In
addition, there are two new variables, NumAsynchronousSampleTimes and
NumVariableSampleTimes. The total number of sample times in a model
is given by:

NumSampleTimes = NumSynchronousSampleTimes +
NumAsynchronousSampleTimes + NumVariableSampleTimes

Compatibility Considerations. Do not use NumSampleTimes. Instead, call
TLC library functions, as follows:

• LibNumDiscreteSampleTimes() to access NumSynchronousSampleTimes

• LibNumAsynchronousSampleTimes() to access
NumAsynchronousSampleTimes

TLCFILES Built-In Now Returns Full Path to Model File Rather
Than Relative Path
A change in TLC invocation now specifies a full path to model files rather
than a relative path.

Compatibility Considerations. This change creates backwards
incompatibility in some custom targets.

When migrating V5.0 (R13) custom targets to V6.0 (R14) , check for and
adjust usage of the TLC function TLCFILES to determine context, such as the
path to the model file, as necessary.

133

Real-Time Workshop® Release Notes

Documentation Enhancements

• Real-Time Workshop Getting Started Guide has been fully updated and
includes a new tutorial on generating code for referenced models.

• Real-Time Workshop User’s Guide is updated, and includes most of the
information on new features described in this chapter.

• Real-Time Workshop Target Language Compiler has been updated. This
document no longer includes an appendix describing all the records that
might be encountered in a model.rtw file.

134

Version 5.2 (R13SP2) Real-Time Workshop® Software

Version 5.2 (R13SP2) Real-Time Workshop Software
This table summarizes what’s new in V5.2 (R13SP2):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Fixed bugs V5.2 product
documentation

135

http://www.mathworks.com/access/helpdesk_r13/help/toolbox/rtw/rtw_product_page.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/rtw/rtw_product_page.html

Real-Time Workshop® Release Notes

Version 5.1.1 (R13SP1+) Real-Time Workshop Software
This table summarizes what’s new in V5.1.1 (R13SP1+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are

• “New -dr Command Line Switch in TLC Detects Cyclic Record Creation”
on page 136

• “Error Resulting from Inaccessible Signal Reporting No Longer Reported”
on page 137

New -dr Command Line Switch in TLC Detects Cyclic
Record Creation
The -dr command line option enables the Target Language Compiler to
detect at run time when cyclic records are created and to produce a diagnostic
message.

Cyclic records are problematic because they cause memory leaks in TLC. A
cyclic record is one which ends up pointing to itself. They can be constructed
only manually, as in the following example:

%createrecord x { } %% create an empty record x
%createrecord y { } %% create an empty record y

%addtorecord x field y %% add a field to x which points to y
%addtorecord y field x %% add a field to y which points to x

At this point, a cyclic record exists — x.field.field == x.

136

Version 5.1.1 (R13SP1+) Real-Time Workshop® Software

As this feature significantly slows Target Language Compiler performance, it
is off by default.

Error Resulting from Inaccessible Signal Reporting
No Longer Reported

Compatibility Considerations
In previous releases, Simulink and the Real-Time Workshop software
reported an error whenever a Floating Scope or a user-written S-function
tried to access an inaccessible signal during simulation or code generation. In
this release, Simulink displays only a warning if you use the sim command to
start the simulation. The Real-Time Workshop software generates neither a
warning nor an error message.

137

Real-Time Workshop® Release Notes

Version 5.1 (R13SP1) Real-Time Workshop Software
This table summarizes what’s new in V5.1 (R13SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Fixed bugs No

138

Version 5.0.1 (R13+) Real-Time Workshop® Software

Version 5.0.1 (R13+) Real-Time Workshop Software
This table summarizes what’s new in V5.0.1 (R13+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed bugs No

New features and changes introduced in this version are

• “Expanded Hook File Options” on page 139

• “Hook Files for Customizing Make Commands” on page 141

Expanded Hook File Options
This update adds new options for specifying target characteristics via hook
files.

During the Real-Time Workshop build process, the software checks for the
existence of target_rtw_info_hook.m, where target is the base file name
of the active system target file. For example, if your system target file is
grt.tlc, then the hook file name is grt_rtw_info_hook.m. If the hook file
is present (that is, is on the MATLAB path), the target specific information
is extracted via the API found in this file. Otherwise, the host computer is
the assumed target.

Three hook file keyword options have been added since V5.0 (R13):

• TypeEmulationWarnSuppressLevel

Suppresses warnings about emulation of word sizes. The default value is 0,
which gives full warnings. This is the preferred setting when generating
code for the production target. Increasing the value gives less warnings.
When generating code for a rapid prototyping system, emulation may not
be a concern and a suppression level of 2 may be desirable.

• PreprocMaxBitsSint:

139

Real-Time Workshop® Release Notes

Specifies limitations of the target C preprocessor to do math with signed
integers. Use this option to prevent errors in the preprocessor phase.

As an example, suppose the target had 64-bit longs. Porting the generated
code to a machine that does not have 64-bit longs can lead to errors in
the processing of integer data types. To prevent these errors, a check is
included in the generated code.

#if (LONG_MAX != (0x7FFFFFFFFFFFFFFFL))
#error Code was generated for compiler with different sized
longs.
#endif

This code requires the preprocessor to compare signed 64-bit integers.
Some preprocessors have bugs that cause such comparisons to yield
incorrect results. The preprocessor math may only be fully correct for say
32-bit signed integers. To specify, this PreprocMaxBitsSint would be set
to 32. Generating the code with this setting causes problematic size checks
to be skipped.

#if 0
/*
Skip this size verification because of preprocessor
limitation
*/
#if (LONG_MAX != (0x7FFFFFFFFFFFFFFFL))
#error Code was generated for compiler with different sized
longs.
#endif
#endif

• PreprocMaxBitsUint

Specifies limitations of the target C preprocessor to do math with unsigned
integers. This is just like PreprocMaxBitsSint except that it pertains to
unsigned integer operations such as

#if (ULONG_MAX != (0xFFFFFFFFFFFFFFFFUL))

If you are not certain about the proper settings for your target, you can get
more details by typing rtwtargetsettings in the MATLAB Command
Window.

140

Version 5.0.1 (R13+) Real-Time Workshop® Software

Hook Files for Customizing Make Commands
Custom targets may require a target-specific hook file to generate
an appropriate make command when a nondefault compiler is
used. Such M-files should be located on the MATLAB path
and be named target_wrap_make_cmd_hook.m (for example,
MPC555pil_wrap_make_cmd_hook.m for the MPC555 PIL target). When
such a file exists, and returns an appropriate make command, the
Real-Time Workshop software overrides its default (for example, Lcc)
batch file wrapping code. For an example make command hook file, see
matlabroot/toolbox/rtw/rtw/wrap_make_cmd.m. Such hook files are
distinct from the target-specific hook files used to describe hardware
characteristics (see “Expanded Hook File Options” on page 139).

141

Real-Time Workshop® Release Notes

Version 5.0 (R13) Real-Time Workshop Software
This table summarizes what’s new in V5.0 (R13):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are organized by these
topics:

• “Compiler Support Enhancements” on page 143

• “Model Configuration Features and Enhancements” on page 143

• “Code Generation Infrastructure Enhancements” on page 149

• “Block Enhancements” on page 158

• “Rapid Simulation Target Enhancement” on page 160

• “External Mode Enhancements” on page 161

• “Simulink Data Object Enhancements” on page 161

• “model.rtw Changes” on page 162

• “Generate HTML Report Option Available for Additional Targets” on page
162

• “Efficiency of Code Generated for GRT and GRT-Malloc Targets Improved”
on page 163

• “Logging Code Moved to the Real-Time Workshop Library” on page 164

• “Custom Code Blocks Moved from Simulink Library” on page 164

• “Target Language Compiler Changes” on page 164

• “Documentation Enhancements” on page 165

142

Version 5.0 (R13) Real-Time Workshop® Software

• “Fixed Bugs” on page 166

• “Limitations for HP and IBM Platforms” on page 172

Compiler Support Enhancements

• “Expanded Support for Borland C Compilers” on page 143

• “Lcc Now Links Libraries in Directory sys/lcc/lib” on page 143

Expanded Support for Borland C Compilers
The Real-Time Workshop product supports Version 5.6 of the Borland C
compiler.

In addition, V5.0 (R13) reinstates support for Borland Version 5.2
"out-of-the-box" for all targets, except when Real-Time Workshop generates
importing S-functions. In such instances, designate the build directory where
the S-function may be found via the make_rtw parameter USER_INCLUDES.
For example, suppose you had generated S-function target code for model
modelA.mdl in build directory D:\modelA_sfcn_rtw and were using that
S-function in model modelB.mdl. In modelB.mdl, the Make command field
of your Target configuration category should define USER_INCLUDES as
follows:

make_rtw "USER_INCLUDES=-ID:\modelA_sfcn_rtw"

Lcc Now Links Libraries in Directory sys/lcc/lib
Template makefiles have been updated to include linking against
sys/lcc/lib.

Model Configuration Features and Enhancements

• “Diagnostics Pane Items Classified into Logical Groups” on page 144

• “Comments Not Generated for Reduced Blocks When "Show eliminated
statements" Is Off” on page 144

• “New General Code Appearance Options” on page 145

143

Real-Time Workshop® Release Notes

• “Identifier Construction for Generated Code Has Been Simplified” on page
148

• “GUI Control over Behavior of Assertion Blocks in Generated Code” on
page 148

• “GUI Control Over TLC %assert Directive Evaluation” on page 149

Diagnostics Pane Items Classified into Logical Groups
To make selecting diagnostics easier, the Diagnostics entries on the
Simulation Parameters dialog box have been reorganized according to
functionality, and alphabetically within each group, as shown in the next
figure.

Comments Not Generated for Reduced Blocks When "Show
eliminated statements" Is Off
The Show eliminated statements option (in the Real-Time Workshop
General code generation options category) is now off by default. As long
as it remains off, the Real-Time Workshop software no longer generates
comments referring to blocks that have been removed from the model via
block reduction optimization.

144

Version 5.0 (R13) Real-Time Workshop® Software

Compatibility Considerations. If you want the Real-Time Workshop
software to generate comments for blocks that are removed due for block
reduction optimization, select the Show eliminated statements option.

New General Code Appearance Options
A new section has been added to the Real-Time Workshop pane of the
Simulation Parameters dialog box, named General code appearance
options. The new section groups four new code formatting options to two
existing options. The General code appearance appear as shown in the
next figure.

The four new options are

Option Description

Maximum identifier length Allows you to limit the number of
characters in function, type definition,
and variable names. The default is 31
characters, but the Real-Time Workshop
software imposes no upper limit.

145

Real-Time Workshop® Release Notes

Option Description

Include data type acronym
in identifier

Perpend acronyms such as i32 (for
long integers) to signal and work vector
identifiers to make code more readable.
The default is not to include data type
acronyms in identifiers.

Include system hierarchy
number in identifiers

Adds prefixes s#_, where # is a unique
integer subsystem index, to identifiers
declared in that subsystem. This enhances
traceability of code, for example via the
hilite_system<`S#'> command. The
default is not to include a system hierarchy
index in identifiers.

Prefix model name to
global identifiers

Prefixes subsystem function names with
the name of the model (model_). The model
name is also prefixed to the names of
functions and data structures at the model
level, when appropriate to the code format.
This is useful when you need to compile
and link code from two or more models into
a single executable, as it avoids potential
name clashes. This option is on by default.

146

Version 5.0 (R13) Real-Time Workshop® Software

Option Description

Generate scalar inline
parameters as:

Controls the code style for inlined
parameters. You can set this option to
literals or macros. When constant
parameters are inlined and declared not
tunable, the following code generation
options are available:

• Vector parameters were formerly stored
as constant parameters in rtP vectors.
Now they are declared as constant
vectors of appropriate type, independent
of rtP.

• Scalar parameters were formerly inlined
as literals. In addition to this approach,
users now have the option to have scalar
parameters expressed as #define macro
definitions.

The default is to generate scalar inline
parameters as literals.

Note: S-functions can mark a run-time
parameter as being constant to
guarantee that it never ends up
in the rtP data structure. Use
ssSetConstRunTimeParamInfo in the
S-function to register a constant runtime
parameter.

Generate comments An existing global option moved from
the General code generation options
(cont) category to this one. As in the prior
release, by default Generate comments
is on.

147

Real-Time Workshop® Release Notes

Identifier Construction for Generated Code Has Been Simplified
The methods the Real-Time Workshop software uses to construct identifiers
for variables and functions have been enhanced to make identifiers more
understandable and more customizable. As a result of these enhancements

• Changes to sections of the model do not cause identifiers elsewhere to
change.

• Reused function input arguments now derive their name from the inport
block.

• Subsystem function names can be prefixed by the model name to prevent
link errors due to name conflicts.

• You can specify a maximum identifier length (can be > 31 characters).

• A new option exists to include a data type acronym in identifiers.

• Use of _a, _b, ... postfixes to identifiers to prevent name clashes has been
dramatically reduced.

GUI Control over Behavior of Assertion Blocks in Generated
Code
The Advanced pane of the Simulation Parameters dialog box provides a
new Model Verification block control popup menu you can use to specify
whether model verification blocks such as Assert, Check Static Gap, and
related range check blocks will be enabled, not enabled, or default to their
local settings. This popup menu has the same effect on Real-Time Workshop
generated code as it does on simulation behavior, and also may be customized.

For Assertion blocks that are not disabled, the generated code for a model
includes one of the following statements at appropriate locations, depending
on the block’s input signal type (Boolean, real, or integer, respectively).

utAssert(input_signal);
utAssert(input_signal != 0.0);
utAssert(input_signal != 0);

By default utAssert is a non-option in generated code. For assertions to abort
execution you must enable them by including a parameter in the make_rtw
command. Specify theMake command field on the Target configuration
category pane as follows:

148

Version 5.0 (R13) Real-Time Workshop® Software

make_rtw OPTS='-DDOASSERTS'

If you want triggered assertions to not abort execution and instead to print
out the assertion statement, use the following make_rtw variant:

make_rtw OPTS='-DDOASSERTS -DPRINT_ASSERTS'

Finally, when running a model in accelerator mode, Simulink calls back to
itself to execute assertion blocks instead of using generated code. Thus a
user-defined callback is still called when assertions fail.

GUI Control Over TLC %assert Directive Evaluation
Prior versions required you to specify the -da Target Language Compiler
command switch for TLC %assert directives to be evaluated. Now you
can more conveniently trigger %assert code by selecting the Enable TLC
Assertions check box on the TLC debugging section of the Real-Time
Workshop dialog. The default state is for asserts not to be evaluated. You
can also control assertion handling from the MATLAB command window.
To set or unset assertion handling, use the following command. The option
is off by default.

set_param(model, 'TLCAssertion', 'on|off')

To see the current setting, use the command

get_param(model, 'TLCAssertion')

Code Generation Infrastructure Enhancements

• “Code for Nonvirtual Subsystems Is Now Reusable” on page 150

• “Packaging of Generated Code Files Simplified” on page 152

• “Different Required Files for S-Function Deployment” on page 154

• “Most Targets Use rtModel Instead of Root SimStruct” on page 155

• “Hook Files Required for Communicating Target-specific Word
Characteristics” on page 157

• “Code Generation Unified for Real-Time Workshop and Stateflow Products”
on page 157

149

Real-Time Workshop® Release Notes

• “Conditional Input Branch Execution Optimization” on page 158

Code for Nonvirtual Subsystems Is Now Reusable
The Real-Time Workshop software V5.0 (R13) introduces the ability to reuse
code generated for nonvirtual subsystems. In prior releases, the Real-Time
Workshop software generated a separate block of code for each nonvirtual
subsystem. In some circumstances — for example, when you use a library
block multiple times in the same fashion — it is now possible to generate a
single shared function for the block and call that function multiple times.
Consolidating code in this fashion can significantly improve the size and
efficiency of generated code.

To implement code reuse, the Real-Time Workshop build process must pass in
appropriate data elements (as function arguments) for each caller of a reused
subsystem. Code generated by the Real-Time Workshop software V5.0 (R13)
enables such arguments for functions generated for nonvirtual subsystems.

You enable code reuse through the Subsystem parameters dialog when
both Treat as atomic unit and Reusable function from the RTW system
code pull-down menu are selected, as illustrated in the next figure.

150

Version 5.0 (R13) Real-Time Workshop® Software

Reusable code will also be generated, when feasible, when you set RTW
system code to Auto. Then, if only one instance of the subsystem exists,
it will be inlined; otherwise a reusable function will be generated if other
characteristics of the model allow this.

Certain conditions may make it impossible to reuse code, causing the
Real-Time Workshop build process to revert to another RTW system code
option even though you specify Reusable function or Auto. When you
specify Reusable function and reuse is not possible, the result is a function
without arguments. When you specify Auto and reuse is not possible, the
Real-Time Workshop build process inlines the subsystem’s code (or in special
cases, creates a function without arguments). Diagnostics are available in the
HTML code generation report (if enabled, see “Generate HTML Report Option
Available for Additional Targets” on page 162) to help identify the reasons
why reuse is not occurring in particular instances. In addition to providing
these exception diagnostics, the HTML report’s Subsystems section also
maps each noninlined subsystem in the model to functions or reused functions
in the generated code.

Requirements for Generating Reusable Code from Stateflow Charts.
To generate reusable code from a Stateflow chart, or from a subsystem
containing a Stateflow chart, all of the following conditions must be met:

• The chart (or subsystem containing the chart) must be a library block (see
“Working with Block Libraries” in the Simulink documentation).

• Data in the chart must not be initialized from workspace. The data
property Initialize from workspace should be off.

• The chart must not output a function call.

See “Nonvirtual Subsystem Code Generation” in the Real Time Workshop
documentation for more details.

Compatibility Considerations. The Real-Time Workshop software V5.0
(R13) alters aspects of generated code to support code reuse for nonvirtual
subsystems. As explained above, you have the ability to select or override
this feature, as well as to specify function and file names from the graphical
user interface.

151

Real-Time Workshop® Release Notes

Packaging of Generated Code Files Simplified
The packaging of generated code into.c and.h files has been simplified. The
following table summarizes the structure of source code generated by the
Real-Time Workshop software. All code modules described are written to the
build directory.

Note The Real-Time Workshop Embedded Coder file packaging differs
slightly (but significantly) from the file packaging described here. See “Code
Modules” in the Real-Time Workshop Embedded Coder User’s Guide for more
information.

File Description

model.c Contains entry points for all
code implementing the model
algorithm (MdlStart, MdlOutputs,
MdlUpdate, MdlInitializeSizes,
MdlInitializeSampleTimes). Also contains
model registration code.

model_private.h Contains local defines and local data that
are required by the model and subsystems.
This file is included by subsystem.c
files in the model. You do not need to
include model_private.h when interfacing
handwritten code to a model.

model.h Defines model data structures and a public
interface to the model entry points and data
structures. Also provides an interface to the
real-time model data structure (model_rtM)
via access macros. model.h is included by
subsystem.c files in the model.
If you are interfacing your handwritten code
to generated code for one or more models,
you should include model.h for each model to
which you want to interface.

152

Version 5.0 (R13) Real-Time Workshop® Software

File Description

model_data.c
(conditional)

model_data.c is conditionally generated. It
contains the declarations for the parameters
data structure and the constant block I/O
data structure. If these data structures are
not used in the model, model_data.c is not
generated. Note that these structures are
declared extern in model.h.

model_types.h Provides forward declarations for the
real-time model data structure and the
parameters data structure. These may be
needed by function declarations of reusable
functions. model_types.h is included by all
subsystem.h files in the model.

rtmodel.h Contains #include directives required
by static main program modules such as
grt_main.c and grt_malloc_main.c. Since
these modules are not created at code
generation time, they include rt_model.h
to access model-specific data structures
and entry points. If you create your own
main program module, take care to include
rtmodel.h.

model_pt.c (optional) Provides data structures that enable a
running program to access model parameters
without use of external mode.

model_bio.c (optional) Provides data structures that enable your
code to access block outputs.

Compatibility Considerations. If you have interfaced handwritten code
to code generated by previous releases of the Real-Time Workshop software,
you might need to remove dependencies on header files that are no longer
generated. Use #includemodel.h directives, and remove #include directives
that refer to any of the following:

153

Real-Time Workshop® Release Notes

Old Filename New Filenames

model_common.h model_types.h and model_private.h
model_export.h model.h

model_prm.h model_data.c

model_reg.h model.c

Different Required Files for S-Function Deployment
In previous releases, the files required for deploying an S-function block that
you generated using the S-function target were the following:

• For S-function inclusion in other models for simulation, the binary
MEX-file object subsys_sf.mexext, where subsys is the subsystem name
and mexext is a platform-dependent MEX-file extension. (For example,
SourceSubsys_sf.dll.)

• For S-function inclusion in other models for code generation, subsys_sf.c
(the stub file), subsys_sf.mexext, and subdirectory subsys_sfcn_rtw with
at least the following files:

- subsys_sf.c

- subsys_sf.h

- subsys_sf_common.h

- subsys_sf_export.h

- subsys_sf_prm.h

- subsys_sf_reg.h

- subsys_sid.h

Beginning in the Real-Time Workshop software V5.0 (R13) , due to the
packaging improvements described in “Packaging of Generated Code Files
Simplified” on page 152, different files are required for deploying your
S-function block. For details, see “Required Files for S-Function Deployment”.

154

Version 5.0 (R13) Real-Time Workshop® Software

Compatibility Considerations. To deploy your S-function blocks for
inclusion in models created in R13 or a later release, you should regenerate
the S-function blocks using the same release that created the models, and
deploy the S-function blocks using the files described in “Required Files for
S-Function Deployment”.

Most Targets Use rtModel Instead of Root SimStruct
The GRT, GRT-Malloc, ERT, and Tornado targets now use the rtModel data
structure to store information about the root model.

Compatibility Considerations. In prior releases, the information about the
root models was stored in the data structure SimStruct. Since the SimStruct
data structure was also used by noninlined S-functions, it contained a number
of S-function fields that were not needed to represent root model information.
The new rtModel structure is lightweight and eliminates the unused fields
in representing the root model. Fields in the rtModel capture model-wide
information pertaining to timing, solvers, logging, model data (such as block
I/O and DWork parameters), and so on. To generate code for the ERT target,
the rtModel data structure is further pruned to contain only those fields that
are relevant to the model under consideration.

If you have previously customized GRT, GRT-Malloc, or Tornado targets,
upgrade each customized target to use the rtModel instead of SimStruct.

To upgrade a target to use the rtModel instead of the SimStruct:

• Include rtmodel.h instead of simstruc.h at the top.

• Since the rtModel data structure has a type that includes the model name,
you need to include the following lines at the top of the file:

#define EXPAND_CONCAT(name1,name2) name1 ## name2

#define CONCAT(name1,name2) EXPAND_CONCAT(name1,name2)

#define RT_MODEL CONCAT(MODEL,_rtModel)

• Change the extern declaration for the function that creates and initializes
the SimStruct to be:

extern RT_MODEL *MODEL(void);

155

Real-Time Workshop® Release Notes

• Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 13 version of
grt_main.c (or grt_malloc_main.c).

• Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

• Change the names of the following functions such that they use the prefix
rt_Sim instead of rt_ and then change the arguments you pass into them.

rt_GetNextSampleHit
rt_UpdateDiscreteTaskSampleHits
rt_UpdateContinuousStates
rt_UpdateDiscreteEvents
rt_UpdateDiscreteTaskTime
rt_InitTimingEngine

See grt_main.c (or grt_malloc_main.c) for the list of arguments that
need to be passed into each function.

• Modify macros that refer to the SimStruct to now refer to the rtModel.
Examples of these modifications include changing

- ssGetErrorStatus to rtmGetErrorStatus

- ssGetSampleTime to rtmGetSampleTime

- ssGetSampleHitPtr to rtmGetSampleHitPtr

- ssGetStopRequested to rtmGetStopRequested

- ssGetTFinal to rtmGetTFinal

- ssGetT to rtmGetT

In addition to the changes to the main C files, change the target TLC file
and the template make files.

• In your template make file, define the symbol USE_RTMODEL. See one of the
GRT or GRT-Malloc template makefiles for an example.

• In your target TLC file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

156

Version 5.0 (R13) Real-Time Workshop® Software

Hook Files Required for Communicating Target-specific Word
Characteristics
You must now supply a target hook file (M-file) to specify target hardware
characteristics, such as word sizes and overflow behavior.

Compatibility Considerations. To communicate details about
target hardware characteristics, you must now supply an M-file named
target_rtw_info_hook.m. Each system target file needs to implement
a hook file. For GRT (grt.tlc), for example, you must name the file
grt_rtw_info_hook.m, and the file needs to be on the MATLAB path. If
the hook file is not provided, the Real-Time Workshop software uses default
values based on the host’s characteristics, which may not be appropriate. For
an example, see toolbox/rtw/rtwdemos/example_rtw_info_hook.m. In
addition, note that the TLC directive %assign DSP = 1 no longer has any
effect. You need to provide a hook file instead.

Code Generation Unified for Real-Time Workshop and
Stateflow Products
The Real-Time Workshop build process now generates code for models that
include Stateflow charts in a single set of output files.

Compatibility Considerations. In earlier releases, the Real-Time
Workshop build process wrote code generated from Stateflow charts to source
code files distinct from the source code files (such as model.c, model.h, etc.)
generated from the rest of a model.

Now, by default, the Stateflow software no longer generates any separate files
from the Real-Time Workshop software. In addition, Stateflow generated
code is seamlessly integrated with other generated code. For example, all
Stateflow initialization code is now inlined.

You can override the default and instruct the Real-Time Workshop build
process to generate separate functions, within separate code files, for a
Stateflow chart. To do this, use the RTW system code options in the Block
parameters dialog of the Stateflow chart (see “Nonvirtual Subsystem Code
Generation” in the Real-Time Workshop documentation). You can control the
names of the functions and the code files generated.

157

Real-Time Workshop® Release Notes

Conditional Input Branch Execution Optimization
This release introduces an optimization called conditional input branch
execution, which speeds simulation and execution of code generated from
the model.

Compatibility Considerations. Previously, when simulating models
containing Switch or Multiport Switch blocks, Simulink executed all blocks
required to compute all inputs to each switch at each time step. In this
release, Simulink, by default, executes only the blocks required to compute
the control input and the data input selected by the control input at each time
step. Likewise, standalone applications generated from the model by the
Real-Time Workshop software execute only the code needed to compute the
control input and the selected data input. To explore this feature, see the
demo rtwdemo_condinput .

Block Enhancements

• “New Rate Transition Block” on page 158

• “S-Function API Extended to Permit Users to Define DWork Properties”
on page 159

• “Lookup Table Blocks Use New Run-Time Library for Smaller Code” on
page 159

• “Relay Block Now Supports Frame-Based Processing” on page 160

• “Transport Delay and Variable Transport Delay Improvements” on page
160

• “Storage Classes for Data Store Memory Blocks” on page 160

New Rate Transition Block
In previous releases, Zero-Order Hold and Unit Delay blocks were required to
handle problems of data integrity and deterministic data transfer between
blocks having different sample rates.

The new Rate Transition block lets you handle sample rate transitions in
multirate applications with greater ease and flexibility than the Zero-Order
Hold and Unit Delay blocks.

158

Version 5.0 (R13) Real-Time Workshop® Software

The Rate Transition block handles both types of rate transitions (fast to slow,
and slow to fast). When inserted between two blocks of differing sample rates,
the Rate Transition block detects the two rates and automatically configures
its input and output sample rates for the appropriate type of transition.

For more information on the use of the Rate Transition block with the
Real-Time Workshop product, see “Sample Rate Transitions” in the Real-Time
Workshop documentation. For a detailed description of the new block, see
Rate Transition in the Simulink reference documentation.

S-Function API Extended to Permit Users to Define DWork
Properties
The S-Function API has been extended to permit specification of an Real-Time
Workshop identifier, storage class, and type qualifier for each DWork that an
S-Function creates. The extensions consist of the following macros:

ssGetDWorkRTWIdentifier(S,idx)
ssSetDWorkRTWIdentifier(S,idx,val)
ssGetDWorkRTWStorageClass(S,idx)
ssSetDWorkRTWStorageClass(S,idx,val)
ssGetDWorkRTWTypeQualifier(S,idx)
ssSetDWorkRTWTypeQualifier(S,idx,val)

As is the case with data store memory or discrete block states, the Real-Time
Workshop identifier may resolve against a Simulink.Signal object. An
example has been added to sfundemos, in the miscellaneous category.

Lookup Table Blocks Use New Run-Time Library for Smaller
Code
Lookup Table (2-D), Lookup Table (3-D), PreLook-Up Using Index Search, and
Interpolation using PreLook-Up blocks now generate code that targets one of
the many new specific, optimized lookup table operations in the Real-Time
Workshop runtime library. This results in dramatically smaller code size.
The library lookup functions themselves incorporate more enhancements to
the actual lookup algorithms for speed improvements for most option settings,
especially for linear interpolations.

159

Real-Time Workshop® Release Notes

Relay Block Now Supports Frame-Based Processing
Relay blocks can now handle frame-based input signals. Each row in a
frame-based input signal is a separate set of samples in frames and each
column represents a different signal channel. The block parameters should be
scalars or row vectors whose length is equal to the number of signal channels.
The block does not allow continuous frame-based input signals.

Transport Delay and Variable Transport Delay Improvements
Code generation for models containing the Transport Delay and Variable
Transport Delay is now require less space.

Storage Classes for Data Store Memory Blocks
You can now control how Data Store Memory blocks in your model are stored
and represented in the generated code, by assigning storage classes and type
qualifiers. You do this in almost exactly the same way you assign storage
classes and type qualifiers for block states. You can also associate a Data
Store Memory block with a signal object, and control code generation for the
block through the signal object.

See “Storage Classes for Data Store Memory Blocks” in the Real-Time
Workshop documentation for more information.

Rapid Simulation Target Enhancement
Executables generated for the Rapid Simulation (RSim) target are now able to
use any Simulink solver, including variable-step solvers. To use this feature,
the target system must be able to check out a Simulink license when running
the generated RSim executable.

For details, see Licensing Protocols for Simulink Solvers in RSim Executables
in the Real-Time Workshop User’s Guide.

Compatibility Considerations
You can maintain backwards compatibility (that is, fixed-step solvers
only, with no need to check out a Simulink license) by selecting Use RTW
fixed step solver from the Solver Selection popup menu on the Rapid
Simulation code generation options dialog. The default solver option

160

Version 5.0 (R13) Real-Time Workshop® Software

is Auto, which will use the Simulink solver module only when the model
requires it.

External Mode Enhancements

• Support for Rapid Simulation (RSim) target

The RSim target now includes full support for all features of Simulink
external mode. External mode lets you use your Simulink block diagram
as a front end for a target program that runs on external hardware or in a
separate process on your host computer, and allows you to tune parameters
and view or log signals as the target program executes.

• Support for ERT target

The Real-Time Workshop Embedded Coder software now includes full
support for all features of Simulink external mode. External mode lets you
use your Simulink block diagram as a front end for a target program that
runs on external hardware or in a separate process on your host computer,
and allows you to tune parameters and view or log signals as the target
program executes.

• Support for uploading signals of all storage classes

Signals from all storage classes, including custom, can now be uploaded in
external mode, as long as signals or parameters have addresses defined.
For example, data stored as bit fields or #defines cannot be uploaded, but
few other restrictions exist.

Simulink Data Object Enhancements
Simulink data objects include several new string properties that you can
exploit for customizing code generation. These properties are

Simulink.Data.Description
Simulink.Data.DocUnits
RTWInfo.Alias

In this release, the Simulink engine and Target Language Compiler do not
use these properties. The properties are included in the model.rtw file and
are reserved for future use. RTWInfo.Alias defines the identifier to be used in

161

Real-Time Workshop® Release Notes

place of the parent data object (parameter, signal, or state) in the code. The
engine checks that the alias is uniquely used by only that object.

model.rtw Changes
In this release, a number of changes have been made to model.rtw.

Compatibility Considerations
If your applications depend on parsing model.rtw files using customized
TLC scripts, read "model.rtw Changes Between Real-Time Workshop 5.0 and
4.1" in Appendix A of the Target Language Compiler documentation, which
describes the structure and contents of compiled models.

Generate HTML Report Option Available for
Additional Targets
In earlier releases, the Generate HTML report option was available only
for the Real-Time Workshop Embedded Coder product. In the current release,
the report is available for all targets (except the S-Function target and Rapid
Simulation target).

The Generate HTML report option is located in the General code
generation options category of the Real-Time Workshop page of the
Simulation Parameters dialog box, as shown in the next figure.

162

Version 5.0 (R13) Real-Time Workshop® Software

The option is on by default. An abbreviated report is generated if you do not
have the Real-Time Workshop Embedded Coder product installed.

Efficiency of Code Generated for GRT and GRT-Malloc
Targets Improved
Substantial changes have been made to the GRT and GRT-Malloc targets to
improve the efficiency of generated code.

Compatibility Considerations
If you have customized either type of target, you should make changes to your
modified files to ensure that your target works properly with V5.0 (R13) of
the Real-Time Workshop software.

You should begin with the versions of the target files included in this release,
and introduce all of your existing customizations to them. If you are unable to
follow this upgrade path, then perform all steps outlined in “Most Targets Use
rtModel Instead of Root SimStruct” on page 155 and “Logging Code Moved
to the Real-Time Workshop Library” on page 164.

163

Real-Time Workshop® Release Notes

Logging Code Moved to the Real-Time Workshop
Library
All the support functions used for logging data have been moved from
rtwlog.c to the Real-Time Workshop library.

Compatibility Considerations
If you have customized a GRT or GRT-Malloc Target, make the following
changes to ensure compatibility with the new logging functions:

• Remove rtwlog.c from all of your template make files.

• In your target’s main C file (which was derived from grt_main.c or
grt_malloc_main.c), include rt_logging.h instead of rtwlog.h.

• In your target’s main C file (which was derived from grt_main.c or
grt_malloc_main.c), you need to change the calls to the logging related
functions because the prototypes of these functions have changed. See
grt_main.c (or grt_malloc_main.c) for the list of arguments that needs
to be passed into each function.

Custom Code Blocks Moved from Simulink Library
The Custom Code blocks have been moved to a new library, named
custcode.mdl (type custcode to access them).

Compatibility Considerations
Because custom code blocks are linked to this new library, backward
compatibility is assured.

Target Language Compiler Changes

• SPRINTF built-in function added

A C-like sprintf formatting function has been added to the Target
Language Compiler, which returns a TLC string encoded with data from
a variable number of arguments.

$assign str = SPRINTF(format,var,...) formats the data in variable
var (and in any additional variable arguments) under control of the
specified format string, and returns a string variable containing the values.

164

Version 5.0 (R13) Real-Time Workshop® Software

The function operates like C library sprintf(), except that output is the
return value rather than contained in an argument to sprintf.

• BlockInstanceData function no longer available

• %filescope directive added

A new directive, %filescope, is now available for limiting scopes of
variables to the files in which they are defined. All variables defined after
the appearance of %filescope in a file have this property; otherwise, they
default to global variables.

• Global variables :: operator available

Use of the :: operator to access global variables is now allowed in TLC files.
Variables defined on the command line and records read from model.rtw
files remain global variables. Nested include files cannot access variables
local to the file that included them.

Compatibility Considerations
S-function TLC files should no longer use the BlockInstanceData function.
All data used by a block should be declared using data type work vectors
(DWork).

Documentation Enhancements

• The expression folding API is documented and available for you to
use, particularly for writing inlined S-functions. In addition, expanded
capabilities are available that support the TLC user control variable
(ucv) in %roll directives, and enable expression folding for blocks such as
Selector. See “Writing S-Functions That Support Expression Folding” in
the Real-Time Workshop documentation for details.

• The Real-Time Workshop User’s Guide has been significantly updated and
reorganized.

• Information pertaining to data structures and subsystems has been
updated and made more accessible.

• New features and GUI changes have been documented

• A new Real-Time Workshop Getting Started Guide is available. This
document explains basic Real-Time Workshop concepts, organizes tutorial

165

Real-Time Workshop® Release Notes

material for easier access, and cross-references more detailed explanations
in the User’s Guide.

• The Target Language Compiler documentation has been significantly
updated and reorganized. A revised collection of tutorial examples
provides new users with a more grounded introduction to TLC syntax.
Documentation on the TLC Function Library and contents of model.rtw
files has also been updated.

Fixed Bugs

• “ImportedExtern and ImportedExternPointer Storage Class Data No
Longer Initialized” on page 167

• “External Mode Properly Handles Systems with no Uploadable Blocks”
on page 167

• “Nondefault Ports Now Usable for External Mode on Tornado Platform”
on page 168

• “Initialize Block Outputs Even If No Block Output Has Storage Class Auto”
on page 168

• “Code Is Generated Without Errors for Single Precision Data Type Block
Outputs” on page 168

• “Duplicate #include Statements No Longer Generated” on page 168

• “Custom Storage Classes Ignored When Unlicensed for the Real-Time
Workshop® Embedded Coder Product” on page 168

• “Erroneous Sample Time Warning Messages No Longer Issued” on page 169

• “Discrete Integrator Block with Rolled Reset No Longer Errors Out” on
page 169

• “Rate Limiter Block Code Generation Limitation Removed” on page 169

• “Multiport Switch with Expression Folding Limitation Removed” on page
169

• “Pulse Generator Code Generation Failures Rectified” on page 169

• “Stateflow I/O with ImportedExternPointer Storage Class Now Handled
Correctly” on page 170

166

Version 5.0 (R13) Real-Time Workshop® Software

• “Parameters for S-Function Target Lookup Blocks May Now Be Made
Tunable” on page 170

• “PreLookup Index Search Block Now Handles Discontiguous Wide Input”
on page 170

• “SimViewingDevice Subsystem No Longer Fails to Generate Code” on page
170

• “Accelerator Now Works with GCC Compiler on UNIX” on page 170

• “Expression Folding Behavior for Action Subsystems Stabilized” on page
170

• “Dirty Flag No Longer Set During Code Generation” on page 171

• “Subsystem Filenames Now Completely Checked for Illegal Characters”
on page 171

• “Sine Wave and Pulse Generator Blocks No Longer Needlessly Use
Absolute Time” on page 171

• “Generated Code for Action Subsystems Now Correctly Guards Execution
of Fixed in Minor Time Step Blocks” on page 171

• “Report Error when Code Generation Requested for Models with Algebraic
Loops” on page 172

ImportedExtern and ImportedExternPointer Storage Class
Data No Longer Initialized
The Real-Time Workshop build process now reverts to its previous
behavior of not initializing data whose storage class is ImportedExtern
or ImportedExternPointer. Such initialization is the external code’s
responsibility.

External Mode Properly Handles Systems with no Uploadable
Blocks
Connecting to systems with no blocks that can be uploaded in external mode
used to fail and cause Simulink to act as though a simulation was running
when none was. The only way to exit the model was to exit MATLAB.
Connecting to these systems now will display a warning in the MATLAB
command window and then run normally.

167

Real-Time Workshop® Release Notes

Nondefault Ports Now Usable for External Mode on Tornado
Platform
In the prior release, a bug prevented the use of any but the default port to
connect to a Tornado (VxWorks) target via external mode. The problem has
been fixed and that configuration now works as documented.

Initialize Block Outputs Even If No Block Output Has Storage
Class Auto
Previously, block outputs were initialized only if at least one block output had
storage class auto. Now even if there are no auto Block I/O entries, exported
globals and custom signals are initialized.

Code Is Generated Without Errors for Single Precision Data
Type Block Outputs
In cases where a reused block outputs entry is the first single-precision data
type block output in the full list of block outputs in the model, the Real-Time
Workshop software now operates without reporting errors. See the Simulink
Release Notes for related single-precision block enhancements.

Duplicate #include Statements No Longer Generated
The Real-Time Workshop build process now creates a unique list of C header
files before emitting #include statements in the model.h file (formerly placed
in model_common.h). For backwards compatibility, the old text buffering
method for includes is still available for use, but can cause multiple includes
in the generated code. You should update your custom code formats to use the
(S)LibAddToCommonIncludes() functions instead of LibCacheIncludes(),
which has been deprecated.

Custom Storage Classes Ignored When Unlicensed for the
Real-Time Workshop Embedded Coder Product
If a user loads a model that uses custom storage classes, and the user is not
licensed for the Real-Time Workshop Embedded Coder product, the custom
storage class is ignored (storage class reverts to auto) and a warning is
produced. Previously, this situation would have generated an error.

168

Version 5.0 (R13) Real-Time Workshop® Software

Erroneous Sample Time Warning Messages No Longer Issued
Erroneous warnings regarding sample times not being in the sample time
table for models that contain a variable sample time block and a fixed step
solver are no longer issued during model compilation.

Discrete Integrator Block with Rolled Reset No Longer Errors
Out
Simulink® Accelerator™ and Real-Time Workshop products used to error
out if they had a Discrete Integrator block configured in 'ForwardEuler',
non-level external reset, and the reset signal was a 'rolled' signal (having a
width greater than 5). This has been fixed.

Rate Limiter Block Code Generation Limitation Removed
The Simulink Accelerator software now generates code for variable-step
solver models that contain a rate limiter block inside an atomic subsystem.

Multiport Switch with Expression Folding Limitation Removed
Simulink Accelerator and Real-Time Workshop products no longer generate a
Fatal Error for Multiport Switch when expression folding is enabled.

Pulse Generator Code Generation Failures Rectified
Several problems with code generation for the pulse generator block have
been eliminated:

• If the block type is PulseGenerator instead of Discrete PulseGenerator,
code can now be generated.

• The scalar expansion for the delay variable is now correct.

• The start function for the Time-based mode in a variable-step solver now
can generate code.

The first two problems also affected the Simulink Accelerator software.

169

Real-Time Workshop® Release Notes

Stateflow I/O with ImportedExternPointer Storage Class Now
Handled Correctly
Stateflow input pointers for signals of ImportedExternPointer storage class
are now correctly initialized, and no longer error out for charts producing
output signals that are nonscalar and of ImportedExternPointer storage
class.

Parameters for S-Function Target Lookup Blocks May Now
Be Made Tunable
The S-Function target code will now compile for models having lookup and
Lookup Table (2-D) blocks when parameters for those blocks are tunable.

PreLookup Index Search Block Now Handles Discontiguous
Wide Input
The PreLookup Index Search block formerly only generated code for signals
from the first roll region of discontiguous wide inputs, such as from a Max
block. This has been fixed.

SimViewingDevice Subsystem No Longer Fails to Generate
Code
Code generation no longer aborts for atomic subsystems configured with
SimViewingDevice=on.

Accelerator Now Works with GCC Compiler on UNIX
The previous version of the Accelerator did not work when the user selected
the gcc compiler with mex -setup. The Accelerator now supports using the
gcc compiler on UNIX systems.

Expression Folding Behavior for Action Subsystems Stabilized
When a model contains an action subsystem (that is, a for loop or while
iterator subsystem) and expression folding is enabled, invalid or inefficient
code sometimes was generated for the model. This problem has been fixed.

170

Version 5.0 (R13) Real-Time Workshop® Software

Dirty Flag No Longer Set During Code Generation
In previous releases, a model would be marked as dirty during the code
generation process and the status would be restored when the process was
finished. With this release the model’s dirty status does not change during
code generation.

Subsystem Filenames Now Completely Checked for Illegal
Characters
In previous releases, it was possible to specify a subsystem filename that
contained illegal (non-alphanumeric) characters, if the name was long enough
and the invalid characters were toward the end of the string. In this release
this bug has been fixed, and the entire character string is now validated.

Sine Wave and Pulse Generator Blocks No Longer Needlessly
Use Absolute Time
Previously, code generated for the Sine Wave and Pulse Generator blocks
accessed absolute time when the blocks were configured as sample based.
This access is not necessary and its overhead has been removed from the
generated code.

Generated Code for Action Subsystems Now Correctly Guards
Execution of Fixed in Minor Time Step Blocks
All blocks contained in an action subsystem must have the same rate unless
some are continuous and some are fixed in minor step (“zoh continuous”). If
there are both continuous and fixed in minor step blocks then the generated
code needs to guard the code for the fixed in minor time step blocks to protect
it from being executed in minor time steps.

These guards were not being generated causing some models to have wrong
answers and consistency failures. This problem has been fixed and the guards
are now generated.

This is also a fix for the Simulink Accelerator software.

171

Real-Time Workshop® Release Notes

Report Error when Code Generation Requested for Models
with Algebraic Loops
The Real-Time Workshop software does not support models containing
algebraic loops. V4.1 (R12.1) contained a bug that enabled some models
having algebraic loops to generate code which could compute incorrect
answers. The models affected were those containing no algebraic loops in
their root level but having algebraic loops in one or more subsystems. This
bug has been fixed, and now building these models will always cause an
error to be reported.

Limitations for HP and IBM Platforms
The V4.0 (R12) Real-Time Workshop platform limitation for the HP and IBM®

platforms still applies to V5.0 (R13). On the HP and IBM platforms, the
Real-Time Workshop software opens the V3.0 (R11) Tunable Parameters
dialog box in place of the Model Parameter Configuration dialog box.
Although they differ in appearance, both dialogs present the same information
and support the same functionality.

172

Version 4.1 (R12.1) Real-Time Workshop® Software

Version 4.1 (R12.1) Real-Time Workshop Software
This table summarizes what’s new in V4.1 (R12.1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are

• “Block Reduction Option On by Default” on page 174

• “Buffer Reuse Code Generation Option” on page 174

• “Build Directory Validation” on page 175

• “Build Subsystem Enhancements” on page 175

• “C API for Parameter Tuning Documented” on page 175

• “Code Readability Improvements” on page 176

• “Support for Control Flow Blocks” on page 176

• “Expression Folding” on page 176

• “External Mode Enhancements” on page 177

• “Generate Comments Option” on page 177

• “Include System Hierarchy in Identifiers Option” on page 178

• “Rapid Simulation Target Support for Inline Parameters” on page 178

• “S-Function Target Enhancements” on page 178

• “Storage Classes for Block States” on page 179

• “Support for tilde (~) in Filenames on UNIX Platforms” on page 179

• “Target Language Compiler Enhancements” on page 179

173

Real-Time Workshop® Release Notes

• “RTWInfo Property Changed” on page 181

• “Fixed Bugs” on page 182

Note For information about closely related products that extend the
Real-Time Workshop product, see the Release Notes for those products.

Block Reduction Option On by Default
The Block reduction option on the Advanced pane of the Simulation
Parameters dialog box is now turned on by default.

Block reduction collapses certain groups of blocks into a single, more
efficient block, or removes them entirely. This results in faster model
execution during simulation and in generated code.

See “Reducing the Number of Blocks in a Model” in the Real-Time Workshop
documentation for more information.

Compatibility Considerations
In previous releases, the Block reduction option on the Advanced pane of
the Simulation Parameters dialog box was off by default. This option is now
on by default.

Buffer Reuse Code Generation Option
A Buffer reuse option has been added to the Real-Time Workshop pane
of the Simulation Parameters dialog box. When you select this option, the
Real-Time Workshop software reuses signal storage whenever possible.

See “Reusing Memory Allocated for Signals” in the Real-Time Workshop
documentation for more information.

Compatibility Considerations
In previous releases, the buffer reuse option was available only through
MATLAB set_param and get_param commands, such as:

set_param(gcs,'bufferreuse','on')

174

Version 4.1 (R12.1) Real-Time Workshop® Software

The ability to set and get this option with the set_param and get_param
commands is still supported.

Build Directory Validation
The build process now disallows building programs in the MATLAB directory
tree.

Compatibility Consideration
Prior to this release, the Real-Time Workshop software allowed you to build
programs in the MATLAB directory tree. As of V4.1 (Release 12.1), this is no
longer allowed. If you attempt to generate code in the MATLAB directory
tree, the Real-Time Workshop software displays an error message, prompting
you to change to a working directory that is not in the MATLAB directory
tree. On a PC, you can continue to build in the directory matlabroot/Work.

The build process also prevents building programs when matlabroot has a
dollar sign ($) in its MATLAB directory name.

Build Subsystem Enhancements
The Build Subsystem feature, introduced in the Real-Time Workshop
software V4.0 (R12), lets you generate code and build an executable from any
nonvirtual subsystem within a model. In the Real-Time Workshop software
V4.1 (R12.1), the Build Subsystem feature has been enhanced as follows:

• The Build Subsystem window now displays additional information about
block parameters referenced by the subsystem.

• From the Build Subsystem window, you can now inline or set the storage
class of any parameter.

See “Generating Code and Executables from Subsystems” in the Real-Time
Workshop documentation for more information.

C API for Parameter Tuning Documented
The Real-Time Workshop software provides data structures and a C API
that enable a running program to access model parameters without use
of external mode.

175

Real-Time Workshop® Release Notes

To access model parameters via the C API, you generate a model-specific
parameter mapping file, model_pt.c. This file contains parameter mapping
arrays that contain information required for parameter tuning.

See “C API for Interfacing with Signals and Parameters” in the Real-Time
Workshop documentation for information on how to generate and use the
parameter mapping file.

Code Readability Improvements
Improvements to the readability of generated code include:

• Elimination of redundant parentheses.

• Long C statements in the generated code are now split across multiple lines.

• Block comments are more informative.

Support for Control Flow Blocks
Simulink V4.1 (R12.1) implements a number of blocks that support logic
constructs such as if-else and switch, and looping constructs such as do-while,
for, and while. The Real-Time Workshop software V4.1 (R12.1) introduces
code generation support for these blocks.

For more information on the control flow blocks, see “Modeling Control Flow
Logic” in the Simulink documentation.

Expression Folding
Expression folding is a code optimization technique that minimizes the
computation of intermediate results at block outputs, and the storage of such
results in temporary buffers or variables. Wherever possible, the Real-Time
Workshop software collapses, or "folds," block computations into single
expressions, instead of generating separate code statements and storage
declarations for each block in the model.

Expression folding dramatically improves the efficiency of generated code,
frequently achieving results that compare favorably to hand-optimized code.
In many cases, model computations fold into a single highly optimized line
of code.

176

Version 4.1 (R12.1) Real-Time Workshop® Software

Most Simulink blocks support expression folding.

For more information, see “Minimizing Computations and Storage for
Intermediate Results” in the Real-Time Workshop documentation.

External Mode Enhancements

• Support for inline parameters

The Real-Time Workshop software now lets you use the Inline
parameters code generation option when building an external mode target
program. When you inline parameters, you can use theModel Parameter
Configuration dialog box to remove individual parameters from inlining
and declare them to be tunable. This allows you to improve overall
efficiency by inlining most parameters, while at the same time retaining
the flexibility of runtime tuning for selected parameters that are important
to your application. In addition, the Model Parameter Configuration
dialog box offers you options for controlling how parameters are represented
in the generated code.

Each time Simulink connects to a target program that was generated with
Inline parameters on, the target program uploads the current value of its
tunable parameters (if any) to the host. These values are assigned to the
corresponding MATLAB workspace variables. This procedure ensures that
the host and target are synchronized with respect to parameter values.

All targets that support external mode (that is, grt, grt_malloc, and
Tornado) now allow inline parameters.

See “External Mode Communications Overview” in the Real-Time
Workshop documentation for more information.

• New status bar display

When Simulink is connected to a running external mode target program,
the simulation time and other status bar information is now displayed and
updated just as it would be in normal mode.

Generate Comments Option
A new Comments option has been added to the Real-Time Workshop pane
of the Simulation Parameters dialog box. This option lets you control whether

177

Real-Time Workshop® Release Notes

or not comments are written in the generated code. See “Configuring Code
Comments” in the Real-Time Workshop documentation for more information.

Include System Hierarchy in Identifiers Option
A new Include system hierarchy in identifiers option has been added to
the Real-Time Workshop pane of the Simulation Parameters dialog box.
When you select this option, the Real-Time Workshop software inserts system
identification tags in the generated code (in addition to tags included in
comments). The tags help you to identify the nesting level, within your source
model, of the block that generated a given line of code.

See “How Symbols Are Formatted in Generated Code” in the Real-Time
Workshop documentation for more information.

Rapid Simulation Target Support for Inline
Parameters
The Rapid Simulation (RSim) Target now works with Inline parameters on.
Note that when Inline parameters is on, the storage class for all parameters
and signals is silently forced to auto.

S-Function Target Enhancements
The S-Function Target Generate S-function feature, introduced in the
Real-Time Workshop software V4.0 (R12), lets you generate an S-function
from a subsystem. This feature has been enhanced as follows:

• The Generate S-function window now displays additional information
about block parameters referenced by the generating subsystem.

• If you have installed and licensed the Real-Time Workshop Embedded
Coder product, the Generate S-function window lets you invoke the
Real-Time Workshop Embedded Coder build process to generate an
S-function wrapper.

See “Automated S-Function Generation” in the Real-Time Workshop
documentation for details.

178

Version 4.1 (R12.1) Real-Time Workshop® Software

Storage Classes for Block States
For certain block types, the Real-Time Workshop software lets you control
how block states in your model are stored and represented in the generated
code. Using the State Properties dialog, you can:

• Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

• Assign symbolic names to block states in generated code.

For more information, see “Block State Storage and Interfacing” in the
Real-Time Workshop documentation.

Support for tilde (~) in Filenames on UNIX Platforms
All filename fields in Simulink now support the mapping of the tilde (~)
character in filenames. For example, in a To File block you can specify
<code>~/outdir/file.mat</code>. On most systems, this expands to
/home/$USER/outdir/file.mat. The Real-Time Workshop software uses
the expanded names.

Target Language Compiler Enhancements
This section summarizes Target Language Compiler enhancements.

• New TLC debugger added

The TLC debugger helps you identify programming errors in your TLC code.
You can set breakpoints in your TLC code, execute TLC code line-by-line,
examine and change variables, and perform many other useful operations.

The TLC debugger operates during code generation, incurring almost no
overhead in the code generation process. You can invoke the debugger:

- By selecting options in the TLC debugging options category of the
Real-Time Workshop pane.

- By including %breakpoint statements in your TLC file.

- By using the MATLAB tlc command, as in

tlc -dc <options>

179

Real-Time Workshop® Release Notes

- By using the -dc build option in the System target file field of the
Real-Time Workshop pane.

For more information, see “Debugging TLC Files” in the Target Language
Compiler documentation.

• model.rtw file format changed

The format of the model.rtw file has changed.

• Block I/O connection handling cleaned up

The handling of signal connections in rtw/c/tlc/blkiolib.tlc and
rtw/ada/tlc/blkiolib.tlc has been reworked. See the description of
LibBlockInputSignal in the Target Language Compiler documentation
for details.

• Support for literal string added

If a string constant is preceded by an L format specifier (as in L"string"),
the Target Language Compiler performs no escape character processing
on that string. This is useful for specifying PC-style paths without using
double back slash characters.

%addincludepath L"C:\mytlc"

The following examples are equivalent.

- L"d:\this\is\a\path"

- "d:\\this\\is\\a\\path"

• Library functions added

The following functions have been added to the TLC Function Library:

LibBlockInputSignalConnected
LibBlockInputSignalLocalSampleTimeIndex
LibBlockInputSignalOffsetTime
LibBlockInputSignalSampleTime
LibBlockInputSignalSampleTimeIndex
LibBlockOutputSignalOffsetTime
LibBlockOutputSignalSampleTime
LibBlockOutputSignalSampleTimeIndex
LibBlockMatrixParameterBaseAddr

180

Version 4.1 (R12.1) Real-Time Workshop® Software

LibBlockParameterBaseAddr
LibBlockNonSampledZC

See the Target Language Compiler documentation for information on
these functions.

Compatibility Considerations

• model.rtw file format has changed. For more information, see the Target
Language Compiler documentation.

• BlockTypeSetup and BlockInstanceSetup calls have been reordered.
During the initialization phase of code generation, the Target Language
Compiler makes a pass over all blocks in the model and executes several
functions, including:

- Each block’s BlockTypeSetup function the first time that block type
is encountered.

- Each block’s BlockInstanceSetup function. BlockInstanceSetup is
called for all instances of a given block type in the model.

The order in which these calls are made is significant, because the
BlockInstanceSetup function may depend upon global variables that are
initialized by the BlockTypeSetup function.

In V4.1 (R12) , the BlockTypeSetup function is called before the
BlockInstanceSetup. This corrects a problem in previous releases, where
BlockInstanceSetup was erroneously called first. You may need to
change your S-functions or block implementations if they depend upon
the previous behavior.

RTWInfo Property Changed
Changes have been made to the RTWInfo property of Simulink.Signal and
Simulink.Parameter data objects.

Compatibility Considerations
In V4.0 (R12), the RTWInfo class had a TypeQualifier property, corresponding
to the RTW storage type qualifier field of signal ports and parameters.

181

Real-Time Workshop® Release Notes

The Real-Time Workshop software V4.1 (R12.1) now supports creation of
custom storage classes, removing the need for the TypeQualifier property.
You should use custom storage classes when type qualification is needed.

By default, the TypeQualifier property of RTWInfo objects is no longer visible
in the Simulink Data Explorer. Also, the TypeQualifier property is no longer
written to ObjectProperties records in the model.rtw file. For backward
compatibility, the TypeQualifier property remains active. You can set and
retrieve the property through a direct reference. For example,

Kp.RTWInfo.TypeQualifier = 'const'

or

tq = Kp.RTWInfo.TypeQualifier

You can make the TypeQualifier property visible in the Simulink Data
Explorer for the duration of a MATLAB session. To do this, execute the
following command prior to opening the Simulink Data Explorer,

feature('RTWInfoTypeQualifier',1)

The above command also directs the Real-Time Workshop software to include
the TypeQualifier property in ObjectProperties records in the model.rtw
file.

For more information see “Simulink Data Objects and Code Generation” in
the Real-Time Workshop documentation.

Fixed Bugs
The Real-Time Workshop software V4.1 (R12) includes the following bug fixes.

Block Reduction Crash Fixed
A problem that crashed MATLAB due to a segmentation fault during the
block reduction process has been fixed. This problem occurred only if the
Block Reduction option was on, and if a Scope block was connected to a
block that was removed due to block reduction.

182

Version 4.1 (R12.1) Real-Time Workshop® Software

Build Subsystem Gives Better Error Message for Function Call
Subsystems
The Build Subsystem feature does not currently support triggered
function-call subsystems. The Real-Time Workshop software now gives a
more informative error message when a Build Subsystem is attempted with
a triggered function-call subsystem.

Check Consistency of Parameter Storage Class and Type
Qualifier
The Real-Time Workshop software now checks for consistency of parameter
storage class and type qualifier when a parameter is specified by both the
Model Parameter Configuration dialog and a referenced Simulink data object.

Code Optimization for Unsigned Saturation and DeadZone
Blocks
When the lower limit of a Saturation or DeadZone block is a zero and is
nontunable, and the data type is unsigned, the comparison against the lower
limit is omitted from the code. Similarly, if the upper or lower limit of the
Saturation block is nontunable and nonfinite, the comparison against the
infinite limit is omitted.

Correct Code Generation of Fixed-Point Blockset Blocks in DSP
Blockset Models
A code generation bug involving some DSP Blockset blocks (see list below)
was fixed. When these blocks were driven by a block from the Fixed-Point
Blockset, generated code would write outside array memory bounds. The
following DSP Blockset blocks generated incorrect code:

Delay Line
Frame Status Conversion
Matrix Multiply
Multiport Selector
Pad
Submatrix
Window Function
Zero Pad

183

Real-Time Workshop® Release Notes

Correct Compilation with Green Hills and DDI Compilers
Compilation errors for files associated with matrix inversion in the
matlabroot/rtw/c/libsrc directory were fixed. These errors occurred with
the Green Hills® and DDI compilers.

Fixed Build Error with Models Having Names Identical to
Windows NT Commands
This fix prevents an error that occurred when building models having names
identical to Windows NT® internal commands. Examples would be models
named verify or path. Such model names are now allowed.

Fixed Error Copying Custom Code Blocks
An error in the Custom Code block Copyfcn callback was fixed. The problem
caused an error when copying a custom code block within a model.

Fixed Error in commonmaplib.tlc
A typo in rev 1.17 of commonmap.tlc was fixed. This typo caused an error
during code generation, when using the grt_malloc target with External
mode selected.

Fixed Name Clashes with Run-Time Library Functions
The Real-Time Workshop software now uses the macros rt_min and rt_max
to avoid clashing with run-time library min and max functions.

Improved Handling of Sample Times
The sample time handling for the S-function and ERT targets has been
improved to use the compiled sample time instead of the user specified sample
time on the input port blocks.

Look-Up Table (n-D) Code Generation Bug Fix
The Real-Time Workshop software now generates correct code for Look-Up
Table (n-D) blocks having 5 or more dimensions with different dimension sizes.

184

Version 4.1 (R12.1) Real-Time Workshop® Software

Parenthesize Negative Numerics in Fcn Block Expressions
Fcn block expressions in the generated code failed to compile in the case of a
unary operator preceding a workspace variable with a negative value, such
as the expression

-v*u

Such expressions are now enclosed in parentheses, as in

(-v) * u

Unnecessary Warnings and Declarations Removed from
Generated Code
Several unnecessary warnings and declarations in the generated code have
been removed. These include:

• In functions where the tid argument is not referenced, the declaration

(void)tid

is no longer generated. (The tid argument is required because the function
API is predefined.)

• Warnings involving const casts were suppressed in some of the
rtw/c/libsrc modules.

Retain .rtw File Option Now Works in Accelerator Mode
In previous releases, the Retain .rtw file option (on the TLC Debugging
Options page of the Simulation Parameters dialog) was ignored if Simulink
was in Accelerator mode. Now, you can retain the model.rtw file during a
build, regardless of the simulation mode.

S-Function Target Memory Allocation Bug Fix
A segmentation fault during generation of S-functions was removed by fixing
the memory management of the port data structure.

185

Real-Time Workshop® Release Notes

TLC Bug Fixes

• Fixed a bug where local variables of calling functions were sometimes
incorrectly visible to called functions.

• The ISINF, ISNAN, and ISFINITE functions now work for complex values.

• The %filescope directive now works as documented.

• Zero indexing on complex numbers is now supported.

In prior releases, the Target Language Compiler allowed 0 indexing for
integer and real values, but not for complex values. This restriction has
been removed in the Target Language Compiler 4.1, as shown in the
following example.

%assign a = 1.0 + 3.0i
%assign b = a[0] %% zero index now allowed

• Fixed a crash that occurred if ROLL_ITERATIONS was called outside of a
%roll construct. ROLL_ITERATIONS returns NULL if called outside of a
%roll construct.

• TLC now allows use of any path separator character independent of
operating system. You can use either \ or / as a path separator character
on UNIX or Microsoft Windows).

• Fixed a bug in the compare for equality operation. 0.0 now compares equal
to -0.0.

186

Version 4.0 (R12) Real-Time Workshop® Software

Version 4.0 (R12) Real-Time Workshop Software
This table summarizes what’s new in V4.0 (R12):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

No bug fixes No

New features and changes introduced in this version are

• “New Real-Time Workshop® Embedded Coder Product” on page 188

• “Support for Simulink Data Objects” on page 188

• “Support for ASAP2 Data Files” on page 189

• “Enhanced Real-Time Workshop Configuration Pane” on page 189

• “Other User Interface Enhancements” on page 189

• “Support for New Simulink Advanced Options Pane” on page 189

• “Model Parameter Configuration Dialog Box” on page 190

• “Support for Tunable Expressions” on page 190

• “S-Function Target Enhancements” on page 191

• “External Mode Enhancements” on page 191

• “Build Directory” on page 192

• “Code Optimization Features” on page 193

• “Subsystem Code Generation” on page 194

• “Nonvirtual Subsystem Code Generation” on page 194

• “Standard Filename Extensions for Generated Files” on page 195

• “hilite_system and Code Tracing” on page 195

187

Real-Time Workshop® Release Notes

• “Generation of Parameter Comments” on page 196

• “Borland 5.4 Compiler Support” on page 196

• “Enhanced Makefile Include Path Rules” on page 196

• “Column-Major Matrix Ordering” on page 196

• “S-Function Target MEX-Files Must Be Rebuilt” on page 197

• “Target Language Compiler Enhancements” on page 197

New Real-Time Workshop Embedded Coder Product
The Real-Time Workshop Embedded Coder is a new add-on product that
replaces and enhances the Embedded Real-Time (ERT) target.

See the Real-Time Workshop Embedded Coder documentation for details.

Compatibility Considerations
The new Real-Time Workshop Embedded Coder product is 100% compatible
with the ERT target. In addition to supporting all previous functions of the
ERT target, the new Real-Time Workshop Embedded Coder product includes
many enhancements.

Support for Simulink Data Objects
The Real-Time Workshop software supports Simulink data objects. Simulink
provides the built-in Simulink.Parameter and Simulink.Signal classes for
use with the Real-Time Workshop software. Using these classes, you can
create parameter and signal objects and assign storage classes and storage
type qualifiers to the objects. These properties control how the generated code
represents signals and parameters. You can extend the Simulink.Parameter
and Simulink.Signal classes to include user-defined properties.

See “Simulink Data Objects and Code Generation” in the Real-Time Workshop
documentation for details.

188

Version 4.0 (R12) Real-Time Workshop® Software

Support for ASAP2 Data Files
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). This
standard is used for data measurement, calibration, and diagnostic systems.

The Real-Time Workshop software now lets you export an ASAP2 file
containing information about your model during the code generation process.
See “Generating ASAP2 Files” in the Real-Time Workshop documentation for
details.

Enhanced Real-Time Workshop Configuration Pane
The Real-Time Workshop pane of the Simulation Parameters dialog box
has been reorganized and made easier to use. See “Configuring Real-Time
Workshop Code Generation Parameters” in the Real-Time Workshop
documentation for details.

Other User Interface Enhancements

• The Tools menu of the Simulink model window contains a new Real-Time
Workshop submenu with shortcuts to frequently used features.

• You can now select a target configuration from the System Target File
Browser by double-clicking on the desired entry in the target list.

See the Real-Time Workshop documentation for details.

Compatibility Considerations
The double-click mechanism for selecting a target configuration from the
System Target File Browser does not replace the previous selection method.
You can still select a target entry and then click OK.

Support for New Simulink Advanced Options Pane
An Advanced pane options pane has been added to the Simulation
Parameters dialog box. The Advanced pane contains

• New code generation options

189

Real-Time Workshop® Release Notes

• Options formerly located in the Diagnostics pane

• Options formerly located in the Real-Time Workshop pane

Compatibility Considerations
Simulation Parameters dialog box options formerly located in the
Diagnostics and Real-Time Workshop panes have been relocated to the
new Advanced pane.

Model Parameter Configuration Dialog Box
The Model Parameter Configuration dialog box extends and replaces the
Tunable Parameters dialog box. The Model Parameter Configuration
dialog box enables you to

• Declare individual parameters to be tunable

• Control the generated storage declarations for each parameter

See “Parameter Storage, Interfacing, and Tuning” in the Real-Time Workshop
documentation for details.

Compatibility Considerations
You must now use theModel Parameter Configuration dialog box instead
of the Tunable Parameters dialog box to declare tunable parameters.

Support for Tunable Expressions
A tunable expression is an expression that contains one or more tunable
parameters. Tunable expressions are now supported during simulation and in
generated code.

Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog box.
When referenced in lower-level subsystems, such parameters remain tunable.

See “Tunable Expressions” in the Real-Time Workshop documentation for a
detailed discussion on using tunable parameters in expressions.

190

Version 4.0 (R12) Real-Time Workshop® Software

S-Function Target Enhancements
S-function target enhancements include:

• Support for variable-step solvers

• Supports for tunable parameters

• New Generate S-function menu option on the Simulink Tools menu that
lets you automatically generate an S-function from a subsystem

The S-function target is now documented in “S-Function Target” in the
Real-Time Workshop documentation.

External Mode Enhancements
New features have been added to external mode:

• Signal Viewing Subsystems have been implemented to let you encapsulate
processing and viewing of signals received from the target system. Signal
Viewing Subsystems run only on the host, generating no code in the target
system. This is useful in situations where you want to process or condition
signals before viewing or logging them, but you do not want to perform
these tasks on the target system. See “Signal Viewing Subsystems” in the
Real-Time Workshop documentation for details.

• The external mode communications application program interface (API) is
now documented. If you want to implement external mode communications
via your own low-level protocol, see “Creating an External Mode
Communication Channel” in the Real-Time Workshop documentation.

• The External Signal & Triggering dialog box has been enhanced as
indicated in the compatibility considerations listed below.

• As indicated in the compatibility considerations listed below, several
additional features now support external mode.

Compatibility Considerations
Previously, you could use only Scope blocks in external mode to receive and
view signals uploaded from the target program. The following features now
support external mode:

191

Real-Time Workshop® Release Notes

• The default operation of the External Signal & Triggering dialog box
has been changed to make monitoring a target program simpler. See
“External Signal Uploading and Triggering” in the Real-Time Workshop
documentation for details.

• Previously, you could use only Scope blocks to receive and view signals
uploaded from a target program. The following features now support
external mode

- Dials & Gauges Blockset

- Display blocks

- To Workspace blocks

- Signal Viewing Subsystems

- S-functions

See “External Mode Compatible Blocks and Subsystems” in the
Real-Time Workshop documentation for details.

Build Directory
The Real-Time Workshop build process now creates a build directory within
your working directory. The build directory stores generated source code
and other files created during the build process. The Real-Time Workshop
software derives the build directory name, model_target_rtw, from the name
of the source model and the chosen target.

See “Directories Used During the Build Process” in the Real-Time Workshop
documentation for details.

Compatibility Considerations
If you have created custom targets for the Real-Time Workshop software
under Release 11, you must update your custom system target files
and template makefiles to create and utilize the build directory. See
matlabroot/rtw/c/grt for examples.

To update a Release 11 target:

1 Add the following to your system target file.

192

Version 4.0 (R12) Real-Time Workshop® Software

/%
BEGIN_RTW_OPTIONS
.
.
.
rtwgensettings.BuildDirSuffix = '_grt_rtw';
END_RTW_OPTIONS
%/

2 Add ".." to the INCLUDES rule in your template makefile. The following
example is from grt_lcc.tmf.

INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(USER_INCLUDES)

The first -I. gets files from the build directory, and the second -I.. gets
files (e.g., user written S-functions) from the current working directory.

Conceptually, think of the current directory and the build directory as the
same (as it was in Release 11). The current working directory contains
items like user written S-functions. The reason ".." must be added to the
INCLUDES rule is that make is invoked in the build directory (i.e., the
current directory was temporarily moved).

3 Place the generated executable in your current working directory. The
following example is from grt_lcc.tmf.

PROGRAM = ../$(MODEL).exe
$(PROGRAM) : $(OBJS) $(RTWLIB)
$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(RTWLIB) $(LIBS)

Code Optimization Features
This section describes new or modified code generation options that are
designed to help you optimize your generated code. The options described are
located on the Advanced pane of the Simulation Parameters dialog box.

• Block reduction: When selected, Simulink collapses certain groups of
blocks into a single, more efficient block, or removes them entirely. This
results in faster model execution during simulation and in generated code.

193

Real-Time Workshop® Release Notes

• Parameter pooling: When selected, Simulink optimizes memory usage
when multiple block parameters refer to storage locations that are
separately defined but structurally identical.

• Signal storage reuse: Replaces the (Enable/Disable) Optimized block
I/O storage option. See the compatibility considerations below for details.

See “Optimizing a Model for Code Generation” in the Real-Time Workshop
documentation for more information on code optimization.

Compatibility Considerations
The Signal storage reuse option replaces the (Enable/Disable) Optimized
block I/O storage option of previous releases. Signal storage reuse is
functionally identical to the older option. Turning Signal storage reuse on
is equivalent to enabling Optimized block I/O storage.

Subsystem Code Generation
The Real-Time Workshop software now generates code and builds an
executable from any subsystem within a model. The build process uses the
code generation and build parameters of the root model. See “Generating
Code and Executables from Subsystems” in the Real-Time Workshop
documentation for details.

Nonvirtual Subsystem Code Generation
The Real-Time Workshop software now lets you generate code modules at
the subsystem level. This feature applies only to nonvirtual subsystems.
With nonvirtual subsystem code generation, you control how many files are
generated, as well as the file and function names. To set options for nonvirtual
subsystem code generation, you use the subsystem’s Block Parameters
dialog box.

See “Nonvirtual Subsystem Code Generation” in the Real-Time Workshop
documentation for details.

Compatibility Considerations
Nonvirtual subsystem code generation replaces the Function management
code generation options available in previous releases. Nonvirtual subsystem

194

Version 4.0 (R12) Real-Time Workshop® Software

code generation is a more general and flexible mechanism for controlling the
number and size of generated files than the Function management code
generation options, File splitting and Function splitting.

Standard Filename Extensions for Generated Files
The Real-Time Workshop software now generates source code and header files
that have standard filename extensions —.c and .h.

Compatibility Considerations
In previous releases, the Real-Time Workshop software gave some generated
files special filename extensions, such as .prm or .reg. As of this release,
the Real-Time Workshop software generates source code and header files
that have standard filename extensions. The file naming conventions for the
following generated files have changed:

File Old Filename New Filename

Model registration file model.reg model_reg.h

Model parameter file model.prm model_prm.h

BlockIOSignals structure
file

model.bio model_bio.c

ParameterTuning file model.pt model_pt.c

External mode data type
transition file

model.dt model_dt.c

If your application code uses #include statements to include the Real-Time
Workshop software generated files (such as model.prm), you may need to
modify these statements. See “Files Created During Build Process” in the
Real-Time Workshop documentation.

hilite_system and Code Tracing
The Real-Time Workshop software uses a new command, hilite_system, to
write system/block identification tags in the generated code. The tags are
designed to help you identify the block, in your source model, that generated a
given line of code.

195

Real-Time Workshop® Release Notes

For more information on identification tags and code tracing, see “Tracing
Generated Code Back to Your Simulink Model”.

Compatibility Considerations
In previous releases, the Real-Time Workshop software used the
locate_system command to trace a tag back to the generating block. The
Real-Time Workshop software now uses the new hilite_system command to
trace identification tags instead of locate_system. Starting with this release,
use the hilite_system command to trace a tag back to the generating block.

Generation of Parameter Comments
The Force generation of parameter comments option in the General
code generation optionssection of the Real-Time Workshop pane of the
Simulink Parameters dialog box controls the generation of comments in
the model parameter structure (rtP) declaration in model_prm.h. This lets
you reduce the size of the generated file for models with a large number of
parameters.

Borland 5.4 Compiler Support
The Real-Time Workshop software now supports Version 5.4 of the Borland
C/C++ compiler.

Enhanced Makefile Include Path Rules
Two new rules and macros have been added to Real-Time Workshop template
makefiles. These rules let you add source and include directories to makefiles
generated by the Real-Time Workshop software without having to modify the
template makefiles themselves. This feature is useful if you need to include
your code when building S-functions.

Column-Major Matrix Ordering
The Real-Time Workshop software now uses column-major ordering for
two-dimensional signal and parameter data instead of row-major ordering.

196

Version 4.0 (R12) Real-Time Workshop® Software

Compatibility Considerations
In previous releases, the Real-Time Workshop software used row-major
ordering for two-dimensional signal and parameter data. The Real-Time
Workshop software now uses column-major ordering.

If your hand-written code interfaces to such signals or parameters via
ExportedGlobal, ImportedExtern, or ImportedExternPointer declarations,
review any code that relies on row-major ordering, and make appropriate
revisions.

S-Function Target MEX-Files Must Be Rebuilt

Compatibility Considerations
S-function MEX-files generated by the S-function target under V3.0 (R11)
are not compatible with V4.0 (R12). The incompatibilities are due to new
features, such as parameter pooling.

If you have built S-function MEX-files with the S-function target under V3.0
(R11), you must rebuild them. See “S-Function Target” in the Real-Time
Workshop documentation for more information.

Target Language Compiler Enhancements
The Target Language Compiler has been enhanced as follows:

• TLC file parsed before execution

The Target Language Compiler now completes parsing of the TLC file just
before execution. This aids development because syntax errors are caught
the first time the TLC file is run instead of the first time the offending
line is reached.

• Speed enhanced

The Target Language Compiler features speed improvements throughout
the software. In particular, the speed of block parameter generation has
been enhanced.

• Build directory created and used

197

Real-Time Workshop® Release Notes

The Target Language Compiler now creates and uses a build directory.
The build directory is in the current directory and prevents generated code
from clashing with other files generated for other targets, and keeps your
model directories maintenance to a minimum.

• Profiler added

A new profiler has been added to the Target Language Compiler to help
you find performance problems in TLC code.

• model.rtw changes

This release contains a new format and changes to the model.rtw file and
the size of the file has been reduced.

• Block parameter aliases added

Aliases have been added for block parameters in the model.rtw file.

• Text expansion improved

TLC contains new, flexible methods for text expansion from within strings.

• Column-major ordering used

Two-dimensional signal and parameter data now use column-major
ordering.

• Record handling improved

TLC now utilizes new record data handling.

• Language semantics changed

- Improved EXISTS behavior.

- New TLC primitives for record handling.

- Functions can return records.

- Records can be printed.

- Records can be empty.

- Record aliases are available.

- Records can be expanded with %<>.

- Built-in functions cannot be undefined via %undef.

198

Version 4.0 (R12) Real-Time Workshop® Software

- Short circuit evaluation for Boolean operators, %if-%elseif-%endif,
and ?: expressions are handled properly

- Conversions of values to and from MATLAB.

- Enhanced conversion rules for FEVAL. You can now pass records and
structs to FEVAL.

- Relational operators can be used with nonfinite values.

- Loop control variables are local to loop bodies.

• Built-in functions added

The following built-in functions have been added to the language:

FIELDNAMES
GENERATE_FORMATTED_VALUE
GETFIELD
ISALIAS
ISEMPTY
ISEQUAL
ISFIELD
REMOVEFIELD
SETFIELD

• Built-in values added

The following built-in values have been added to the language:

INTMAX
INTMIN
TLC_FALSE
TLC_TRUE
UINTMAX

• Support for inlined code added

Support has been added for two-dimensional signals in inlined code.

Compatibility Considerations
If you are upgrading from Release 11 to Release 12, the following changes
may affect your TLC code:

199

Real-Time Workshop® Release Notes

• Nested evaluations are no longer supported. Expressions such as the
following are no longer supported:

%<LibBlockParameterValue(%<myVariable>,"", "", "")>

You must convert these expressions into equivalent non-nested expressions.

• Aliases are no longer automatically created for Parameter blocks while
reading in the Real-Time Workshop files.

• You cannot change the contents of a "Default" record after it has been
created. In the previous TLC, you could change a "Default" record and see
the change in all the records that inherited from that default record.

• The %codeblock and %endcodeblock constructs are no longer supported.

• %defines and macro constructs are no longer supported.

• Use of line continuation characters (... and \) are not allowed inside of
strings. Also, to place a double quote (") character inside a string, you
must use \". Previously, the Target Language Compiler allowed you to use
""" to get a double quote in a string.

• Semantics have been formalized to %include files in different contexts (e.g.,
from generate files, inside of %with blocks, etc.) %include statements are
now treated as if they were read in from the global scope.

• The previous the Target Language Compiler had the ability to split
function definitions (and other directives) across include file boundaries
(e.g., you could start a %function in one file and %include a file that had
the %endfunction). This no longer works.

• Nested functions are no longer allowed. For example,

%function foo ()
%function bar ()
%endfunction

%endfunction

• Built-in functions cannot be undefined via %undef. It is possible to undefine
built in values, but this practice is not encouraged.

• Recursive records are no longer allowed. For example,

Record1 {

200

Version 4.0 (R12) Real-Time Workshop® Software

Val 2
Ref Record2

}
Record2 {

Val 3
Ref Record1

}

• Record declaration syntax has changed. The following code fragments
illustrate the differences between declaring a record recVar in previous
versions of the Target Language Compiler and the current release.

- Previous versions:

%assign recVarAlias = recVar { ...
field1 value1 ...
field2 value2 ...
...
fieldN valueN ...

}

- Current version:

%createrecord recVar { ...
field1 value1 ...
field2 value2 ...
...
fieldN valueN ...

}

• Semantics of the EXISTS function have changed. In the previous release of
TLC, EXISTS(var) would check if the variable represented by the string
value in var existed. In the current release of TLC, EXISTS(var) checks
to see if var exists or not.

To emulate the behavior of EXISTS in the previous release, replace

EXISTS(var)

with

EXISTS("%<var>")

201

Real-Time Workshop® Release Notes

202

Compatibility Summary for Real-Time Workshop® Software

Compatibility Summary for Real-Time Workshop Software
This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with Version Compatibility Impact

Latest Version
V7.2 (R2008b)

See the Compatibility Considerations subheading for each of these
new features or changes:

• “Support for Simulink Legacy Code Tool Enhancement” on page 5

• “Improperly-Scaled Fixed-Point Relational Operators Now Match
MATLAB Results” on page 7

• “MISRA C Code Initialization Enhancements” on page 9

• “Configure Unique Custom Code Settings for Library Models in the
Configuration Parameters Dialog Box” on page 11

V7.1 (R2008a) See the Compatibility Considerations subheading for each of these
new features or changes:

• “emlc Searches Directories in Different Order” on page 17

• “Generated Code No Longer Automatically Includes math.h Header
File” on page 18

• “Default TCP/IP Transport for External Mode Uses New Server
(Target) Side Communication Interface” on page 19

V7.0.1 (R2007b+) None

203

Real-Time Workshop® Release Notes

Version (Release) New Features and Changes with Version Compatibility Impact

V7.0 (R2007b) See the Compatibility Considerations subheading for each of these
new features or changes:

• “Code Generation from Embedded MATLAB Algorithms That Span
Multiple M-Files” on page 23

• “New Configuration Parameters for Controlling Compiler
Optimization Level and Specifying Custom Optimization Settings”
on page 24

• “Real-Time Workshop Reserved Keywords Listed in Documentation”
on page 31

• “Template Makefile Token ADD_MDL_NAME_TO_GLOBALS
Removed” on page 31

• “Nonzero Start Time Behavior Change” on page 31

• “TLC Custom Code Library Function Behavior Changes” on page 32

• “Template Makefile MAKECMD Path Change for gmake on Microsoft
Windows” on page 33

V6.6.1 (R2007a+) None
V6.6 (R2007a) See the Compatibility Considerations subheading for this new

feature or change:

• “New sl_customization Based Method for Registering External Mode
Transport Layers” on page 42

V6.5 (R2006b) See the Compatibility Considerations subheading for each of these
new features or changes:

• “Code Formatting Consistency Improvements” on page 47

• “Change to Default Settings for Multitasking Diagnostic Options”
on page 48

• “Parameter Pooling Is Now Always Enabled” on page 49
V6.4.1 (R2006a+) None

204

Compatibility Summary for Real-Time Workshop® Software

Version (Release) New Features and Changes with Version Compatibility Impact

V6.4 (R2006a) See the Compatibility Considerations subheading for each of these
new features or changes:

• “Format Enhancements for model.rtw File” on page 60

• “Changes to TLC Files in matlabroot/rtw/c/tlc” on page 63
V6.3 (R14SP3) See the Compatibility Considerations subheading for each of these

new features or changes:

• “Customizations to Built-In Blocks” on page 68

• “Use slbuild Instead of rtwgen” on page 68

• “Model Hardware Configuration Parameters Now Honor Device Type
Restrictions” on page 69

• “rem Function No Longer Supports Tunable Arguments” on page 70
V6.2.1 (R14SP2+) None
V6.2 (R14SP2) None
V6.1 (R14SP1) None

205

Real-Time Workshop® Release Notes

Version (Release) New Features and Changes with Version Compatibility Impact

V6.0 (R14) See the Compatibility Considerations subheading for each of these
new features or changes:

• “Support for New Simulink Model Referencing (Model Block) Feature”
on page 91

• “New C API for Accessing Model Block Outputs and Parameter Data”
on page 94

• “Back-Propagating Auto, Test-pointed Signal Labels Through
Subsystem Output Ports” on page 96

• “Declaring Wide Signals, States, and Parameters as
ImportedExternPointer” on page 96

• “External Mode Changes May Impact Customized Makefiles and
Static Main files” on page 99

• “Upgrading Custom Transport Layers for External Mode to
Single-Channel Architecture” on page 101

• “Preventing User Source Code from Being Deleted from Build
Directories” on page 104

• “Hook Files Describing Hardware Characteristics No Longer
Supported” on page 105

• “New Asynchronous Block Library” on page 110

• “Symbol Formatting Options Replaced” on page 120

• “Global Data Structure Identifiers for Targets Now Incorporate Model
Name” on page 122

• “Hardware Configuration Parameters” on page 124

• “Defining and Displaying Custom Target Options” on page 125

• “New SelectCallback Function for System Target Files” on page 127

• “Shared Utilities Directory and the Build Process” on page 127

• “Tornado Target Requires Macro in Template Make File” on page 130

• “Custom Storage Classes Can No Longer Be Used with GRT Targets”
on page 131

• “Accessing the Number of Sample Times from TLC for Custom
Targets” on page 133

• “TLCFILES Built-In Now Returns Full Path to Model File Rather
Than Relative Path” on page 133

206

Compatibility Summary for Real-Time Workshop® Software

Version (Release) New Features and Changes with Version Compatibility Impact

V5.1.1 (R13SP1+) See the Compatibility Considerations subheading for this new
feature or change:

• “Error Resulting from Inaccessible Signal Reporting No Longer
Reported” on page 137

V5.1 (R13SP1) None
V5.0.1 (R13+) None
V5.0 (R13) See the Compatibility Considerations subheading for each of these

new features or changes:

• “Comments Not Generated for Reduced Blocks When "Show
eliminated statements" Is Off” on page 144

• “Code for Nonvirtual Subsystems Is Now Reusable” on page 150

• “Packaging of Generated Code Files Simplified” on page 152

• “Different Required Files for S-Function Deployment” on page 154

• “Most Targets Use rtModel Instead of Root SimStruct” on page 155

• “Hook Files Required for Communicating Target-specific Word
Characteristics” on page 157

• “Code Generation Unified for Real-Time Workshop and Stateflow
Products” on page 157

• “Conditional Input Branch Execution Optimization” on page 158

• “model.rtw Changes” on page 162

• “Efficiency of Code Generated for GRT and GRT-Malloc Targets
Improved” on page 163

• “Logging Code Moved to the Real-Time Workshop Library” on page 164

• “Custom Code Blocks Moved from Simulink Library” on page 164

• “Target Language Compiler Changes” on page 164

207

Real-Time Workshop® Release Notes

Version (Release) New Features and Changes with Version Compatibility Impact

V4.1 (R12+) See the Compatibility Considerations subheading for each of these
new features or changes:

• “Block Reduction Option On by Default” on page 174

• “Buffer Reuse Code Generation Option” on page 174

• “Build Directory Validation” on page 175

• “Target Language Compiler Enhancements” on page 179

• “RTWInfo Property Changed” on page 181
V4.0 (R12) See the Compatibility Considerations subheading for each of these

new features or changes:

• “New Real-Time Workshop® Embedded Coder Product” on page 188

• “Other User Interface Enhancements” on page 189

• “Support for New Simulink Advanced Options Pane” on page 189

• “Model Parameter Configuration Dialog Box” on page 190

• “External Mode Enhancements” on page 191

• “Build Directory” on page 192

• “Code Optimization Features” on page 193

• “Nonvirtual Subsystem Code Generation” on page 194

• “Standard Filename Extensions for Generated Files” on page 195

• “hilite_system and Code Tracing” on page 195

• “Column-Major Matrix Ordering” on page 196

• “S-Function Target MEX-Files Must Be Rebuilt” on page 197

• “Target Language Compiler Enhancements” on page 197

208

	toc
	Summary by Version
	Using Release Notes
	What’s in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Version 7.2 (R2008b) Real-Time Workshop Software
	Support for Enumerated Data Types in Generated C Code
	Support for Simulink Legacy Code Tool Enhancement
	Compatibility Considerations

	emlc Support for Fixed-Point Data Types Greater Than 32 Bits (Up
	File Structure of C Code Generated by emlc Now Matches M-File St
	emlc Uses Same Trigonometric Functions as MATLAB
	Improperly-Scaled Fixed-Point Relational Operators Now Match MAT
	Compatibility Consideration

	emlc Now Prevents Default fimath Mismatches for MEX Functions
	Ability to Optimize Code for Vector Assignments by Replacing for
	Rate Transition Support Enhanced for Signal Line Branching and D
	Branching Supported on Output Port of Asynchronous Rate Transiti
	Asynchronous Subsystems Can Directly Connect When Rate Transitio

	Generated Code Includes Standard C Static Files (stddef.h and st
	MISRA C Code Initialization Enhancements
	Compatibility Considerations

	Ability to Register Keywords to Avoid Conflicts with External Co
	Use Same Custom Code Settings for Model Simulation and Real-Time
	Configure Unique Custom Code Settings for Library Models in the
	Compatibility Considerations

	Flexible Configuration Options for Referenced Models in TLC-Base
	Optimize Floating-Point to Integer Data Type Conversions Using N
	New and Enhanced Demos

	Version 7.1 (R2008a) Real-Time Workshop Software
	Removed Static Libraries rtwlib_* to Simplify Code Integration
	New API for Registering Hardware Device Vendor and Type
	More Cases Supported for Rate Transition Block Automatic Inserti
	Removed Limitations for Number of Referenced Models Built
	BuildInfo API Now Provides Composite Model Reference Description
	BuildInfo API Better Supports Non-Compiled Dependencies
	MATLAB Editor Syntax Highlighting for Target Language Compiler (
	New Configuration Option “Include custom source code” for S-Func
	New Configuration Objects for Specifying Constant Function Input
	emlc Searches Directories in Different Order
	Compatibility Considerations

	Generated Code No Longer Automatically Includes math.h Header Fi
	Compatibility Considerations

	Default TCP/IP Transport for External Mode Uses New Server (Targ
	Compatibility Considerations

	“What’s This?” Context-Sensitive Help Available for Simulink Con
	New and Enhanced Demos

	Version 7.0.1 (R2007b+) Real-Time Workshop Software
	Version 7.0 (R2007b) Real-Time Workshop Software
	New emlc Command-Line Function for Generating C Code from Embedd
	Code Generation from Embedded MATLAB Algorithms That Span Multip
	Compatibility Considerations

	Support for Stateflow Animation with Simulink External Mode
	Enhanced Auto-Insertion of Asynchronous Rate Transition Blocks
	Redundant Buffers Removed Between Asynchronous Rates with Same P
	New Configuration Parameters for Controlling Compiler Optimizati
	Compatibility Considerations

	Additional Microprocessors and Enhanced Graphical Interface for
	Enhanced Efficiency in Generated Code of Iterator-Selector-Assig
	Code Optimizations for Concatenate, Conjugate, Dot Product, and
	Negative Expressions Enhanced Efficiency in Generated Code
	Expression Folding Enhancement
	Static File Dependencies Reduced for Improved Integration and Bu
	Support for Selecting and Viewing a Target Function Library (TFL
	Real-Time Workshop Reserved Keywords Listed in Documentation
	Compatibility Considerations

	Template Makefile Token ADD_MDL_NAME_TO_GLOBALS Removed
	Compatibility Considerations

	Nonzero Start Time Behavior Change
	Compatibility Considerations

	TLC Custom Code Library Function Behavior Changes
	Compatibility Considerations

	Template Makefile MAKECMD Path Change for gmake on Microsoft Win
	Compatibility Considerations

	New and Enhanced Demos

	Version 6.6.1 (R2007a+) Real-Time Workshop Software
	Version 6.6 (R2007a) Real-Time Workshop Software
	Static File Dependencies Reduced For Improved Integration and Bu
	Support for Simulink Legacy Code Tool Enhancements
	New Target Language Compiler Tutorial
	Code Generation for Multidimensional Signals
	Enhanced Checking and Reporting for Identifier Conflicts
	Enhanced Support for Tunable Parameters in Expressions
	New Loss of Tunability Diagnostic
	Support for Microsoft Visual C++ Express Edition
	Enhanced Code Efficiency, Including Merge Block Optimizations
	Reporting of Unconnected Signal Generators
	Real-Time Workshop Profiling Works with Referenced Models
	New Makefile Command Controls Location and Naming of Model Refer
	New TMF Token MODELREF_LINK_RSPFILE Supports Linking Response Fi
	New sl_customization Based Method for Registering External Mode
	Compatibility Considerations

	New and Enhanced Demos

	Version 6.5 (R2006b) Real-Time Workshop Software
	Support for Simulink Report Generator
	New Pack-and-Go Utility
	Support for New Simulink.SubSystem.getChecksum Command for Deter
	Merge Block Input Signals Can Have Storage Classes
	Code Formatting Consistency Improvements
	Compatibility Considerations

	Support for Simulink Legacy Code Tool
	New findIncludeFiles Function
	Show eliminated statements Model Configuration Option Renamed
	Change to Default Settings for Multitasking Diagnostic Options
	Compatibility Considerations

	Parameter Pooling Is Now Always Enabled
	Compatibility Considerations

	PreLookup Index Search and Interpolation (n-D) Using PreLookup B
	Character Patterns You Should Not Use in Block Names
	New and Enhanced Demos

	Version 6.4.1 (R2006a+) Real-Time Workshop Software
	Version 6.4 (R2006a) Real-Time Workshop Software
	New Build Information Application Program Interface
	New Mechanism for Customizing Post Code Generation Build Process
	New Model Configuration Option for Suppressing Makefile Generati
	New RSim Target Option for Feeding Inport Blocks with MAT-File D
	Switch Block Optimization for Wide Control Port Signals
	Multiport Switch Block Enhanced to Generate Default Switch Case
	C++ Language Support Enhancements
	Limitations

	Support for Simulink Signal Object Initialization
	Compatibility Considerations

	Identifiers and Model Reference Applications
	Support for Simulink Parameter Object Data Type Enhancements
	Support for New Simplest Rounding Mode for Fixed-Point Simulink
	Name Change for PrevZC Identifier in Generated Code
	Format Enhancements for model.rtw File
	New Target Language Compiler Library Functions That Support the
	Compatibility Considerations

	Changes to TLC Files in matlabroot/rtw/c/tlc
	Compatibility Considerations

	New and Enhanced Demos
	Documentation Enhancements

	Version 6.3 (R14SP3) Real-Time Workshop Software
	New rtw_precompile_libs Function
	Support for Subsystem Latch Enhancements
	Support for Variable Transport Delay Enhancements
	C++ Target Language Support for the Real-Time Windows Target Pro
	Rapid Simulation Target Enhanced for Use with the Distributed Co
	Simulink Model and MATLAB Desktop Window Interaction Enhanced
	Customizations to Built-In Blocks
	Compatibility Considerations

	Use slbuild Instead of rtwgen
	Compatibility Considerations

	Model Hardware Configuration Parameters Now Honor Device Type Re
	Compatibility Considerations

	rem Function No Longer Supports Tunable Arguments
	Compatibility Considerations

	Block Libraries, RSim Target Executables, and MAT-Files
	Compatibility Considerations

	Documentation Enhancements

	Version 6.2.1 (R14SP2+) Real-Time Workshop Software
	Version 6.2 (R14SP2) Real-Time Workshop Software
	Model Advisor Enhancements
	Rate Transition Block Enhancements
	Data Store Read Block Enhancement
	C++ Target Language Support
	Limitations

	Support for Open Watcom 1.3 Compiler
	New Configuration Option for Optimizing Floating-Point to Intege
	Task Priority Block Parameters Renamed for Consistency
	New RSim Target Configuration Option
	LibManageAsyncCounter Function Added to asynclib.tlc Library
	Enhanced Documentation on Integrating Legacy and Custom Code wit
	Documentation Enhancements

	Version 6.1 (R14SP1) Real-Time Workshop Software
	Changes from the Previous Release

	Version 6.0 (R14) Real-Time Workshop Software
	Tornado Support for VxWorks Target
	User Interface and Configuration Enhancements
	New Model Explorer and Configuration Parameters Dialogs for Cont
	Generated Code Report Integrated into Model Explorer
	Model Advisor Helps You to Configure and Optimize Targets
	Real-Time Workshop Software Now Supports Intel Compiler

	Support for New Simulink Model Referencing (Model Block) Feature
	Compatibility Considerations for Custom Targets

	Signal, Parameter Handling, and Interfacing Enhancements
	New C API for Accessing Model Block Outputs and Parameter Data
	Back-Propagating Auto, Test-pointed Signal Labels Through Subsys
	Declaring Wide Signals, States, and Parameters as ImportedExtern
	Bus Creator Blocks Now Can Emit Structures
	New Options for Controlling Resolution of Signal Objects for Nam
	CustomStorageClass and StorageClass Properties Initialized Diffe

	External Mode Enhancements
	External Mode Changes May Impact Customized Makefiles and Static
	Floating Scopes Now Work in External Mode
	Serial Transport Mechanism for External Mode on Microsoft Window
	Upgrading Custom Transport Layers for External Mode to Single-Ch
	New Static Memory Allocation Option for External Mode Code Gener

	Code Customization Enhancements
	Source Code for User S-Functions Easier to Include
	Custom Code Block Library Enhancements
	Combining User C++ Files with Generated Code
	Preventing User Source Code from Being Deleted from Build Direct
	Designating Target-Specific Math Functions
	Hook Files Describing Hardware Characteristics No Longer Support

	Timing-Related Enhancements
	Application Lifespan Option Optimizes Timer Data Storage
	Enabling the Rapid Simulation Target to Time Out
	New Asynchronous Block Library
	Automatic Slow-to-Fast and Fast-to-Slow Transition Detection for
	Automatic Insertion of Rate Transition Blocks
	Enhanced Absolute and Elapsed Time Computation
	Improved Single-Tasking Code Generation

	GRT and ERT Target Unification
	Code Format Unification
	Compatibility Considerations for GRT-Based Targets
	Real-Time Workshop and Real-Time Workshop Embedded Coder Feature
	Symbol Formatting Options Replaced

	Underscores No Longer Replace Spaces in Identifiers for Multi-Wo
	Global Data Structure Identifiers for Targets Now Incorporate Mo
	Compatibility Considerations

	Support for Simulink Configuration Set Feature
	Support for New Simulink getActiveConfigSet Function
	New switchTarget Function

	Hardware Configuration Parameters
	Compatibility Considerations

	Enhancements and Changes that Affect Custom Targets
	Defining and Displaying Custom Target Options
	New SelectCallback Function for System Target Files

	Shared Utilities Directory and the Build Process
	Compatibility Considerations

	Tornado Target Requires Macro in Template Make File
	Compatibility Considerations

	Custom Storage Classes Can No Longer Be Used with GRT Targets
	Compatibility Considerations

	Target Language Compiler Enhancements and Changes
	ISSLPRMREF TLC Built-In Supports Parameter Sharing with Simulink
	New Argument for TLC GENERATE_FORMATTED_VALUE Built-In Function
	Accessing the Number of Sample Times from TLC for Custom Targets
	TLCFILES Built-In Now Returns Full Path to Model File Rather Tha

	Documentation Enhancements

	Version 5.2 (R13SP2) Real-Time Workshop Software
	Version 5.1.1 (R13SP1+) Real-Time Workshop Software
	New -dr Command Line Switch in TLC Detects Cyclic Record Creatio
	Error Resulting from Inaccessible Signal Reporting No Longer Rep
	Compatibility Considerations

	Version 5.1 (R13SP1) Real-Time Workshop Software
	Version 5.0.1 (R13+) Real-Time Workshop Software
	Expanded Hook File Options
	Hook Files for Customizing Make Commands

	Version 5.0 (R13) Real-Time Workshop Software
	Compiler Support Enhancements
	Expanded Support for Borland C Compilers
	Lcc Now Links Libraries in Directory sys/lcc/lib

	Model Configuration Features and Enhancements
	Diagnostics Pane Items Classified into Logical Groups
	Comments Not Generated for Reduced Blocks When "Show eliminated
	New General Code Appearance Options
	Identifier Construction for Generated Code Has Been Simplified
	GUI Control over Behavior of Assertion Blocks in Generated Code
	GUI Control Over TLC %assert Directive Evaluation

	Code Generation Infrastructure Enhancements
	Code for Nonvirtual Subsystems Is Now Reusable
	Packaging of Generated Code Files Simplified
	Different Required Files for S-Function Deployment
	Most Targets Use rtModel Instead of Root SimStruct
	Hook Files Required for Communicating Target-specific Word Chara
	Code Generation Unified for Real-Time Workshop and Stateflow Pro
	Conditional Input Branch Execution Optimization

	Block Enhancements
	New Rate Transition Block
	S-Function API Extended to Permit Users to Define DWork Properti
	Lookup Table Blocks Use New Run-Time Library for Smaller Code
	Relay Block Now Supports Frame-Based Processing
	Transport Delay and Variable Transport Delay Improvements
	Storage Classes for Data Store Memory Blocks

	Rapid Simulation Target Enhancement
	Compatibility Considerations

	External Mode Enhancements
	Simulink Data Object Enhancements
	model.rtw Changes
	Compatibility Considerations

	Generate HTML Report Option Available for Additional Targets
	Efficiency of Code Generated for GRT and GRT-Malloc Targets Impr
	Compatibility Considerations

	Logging Code Moved to the Real-Time Workshop Library
	Compatibility Considerations

	Custom Code Blocks Moved from Simulink Library
	Compatibility Considerations

	Target Language Compiler Changes
	Compatibility Considerations

	Documentation Enhancements
	Fixed Bugs
	ImportedExtern and ImportedExternPointer Storage Class Data No L
	External Mode Properly Handles Systems with no Uploadable Blocks
	Nondefault Ports Now Usable for External Mode on Tornado Platfor
	Initialize Block Outputs Even If No Block Output Has Storage Cla
	Code Is Generated Without Errors for Single Precision Data Type
	Duplicate #include Statements No Longer Generated
	Custom Storage Classes Ignored When Unlicensed for the Real-Time
	Erroneous Sample Time Warning Messages No Longer Issued
	Discrete Integrator Block with Rolled Reset No Longer Errors Out
	Rate Limiter Block Code Generation Limitation Removed
	Multiport Switch with Expression Folding Limitation Removed
	Pulse Generator Code Generation Failures Rectified
	Stateflow I/O with ImportedExternPointer Storage Class Now Handl
	Parameters for S-Function Target Lookup Blocks May Now Be Made T
	PreLookup Index Search Block Now Handles Discontiguous Wide Inpu
	SimViewingDevice Subsystem No Longer Fails to Generate Code
	Accelerator Now Works with GCC Compiler on UNIX
	Expression Folding Behavior for Action Subsystems Stabilized
	Dirty Flag No Longer Set During Code Generation
	Subsystem Filenames Now Completely Checked for Illegal Character
	Sine Wave and Pulse Generator Blocks No Longer Needlessly Use Ab
	Generated Code for Action Subsystems Now Correctly Guards Execut
	Report Error when Code Generation Requested for Models with Alge

	Limitations for HP and IBM Platforms

	Version 4.1 (R12.1) Real-Time Workshop Software
	Block Reduction Option On by Default
	Compatibility Considerations

	Buffer Reuse Code Generation Option
	Compatibility Considerations

	Build Directory Validation
	Compatibility Consideration

	Build Subsystem Enhancements
	C API for Parameter Tuning Documented
	Code Readability Improvements
	Support for Control Flow Blocks
	Expression Folding
	External Mode Enhancements
	Generate Comments Option
	Include System Hierarchy in Identifiers Option
	Rapid Simulation Target Support for Inline Parameters
	S-Function Target Enhancements
	Storage Classes for Block States
	Support for tilde (~) in Filenames on UNIX Platforms
	Target Language Compiler Enhancements
	Compatibility Considerations

	RTWInfo Property Changed
	Compatibility Considerations

	Fixed Bugs
	Block Reduction Crash Fixed
	Build Subsystem Gives Better Error Message for Function Call Sub
	Check Consistency of Parameter Storage Class and Type Qualifier
	Code Optimization for Unsigned Saturation and DeadZone Blocks
	Correct Code Generation of Fixed-Point Blockset Blocks in DSP Bl
	Correct Compilation with Green Hills and DDI Compilers
	Fixed Build Error with Models Having Names Identical to Windows
	Fixed Error Copying Custom Code Blocks
	Fixed Error in commonmaplib.tlc
	Fixed Name Clashes with Run-Time Library Functions
	Improved Handling of Sample Times
	Look-Up Table (n-D) Code Generation Bug Fix
	Parenthesize Negative Numerics in Fcn Block Expressions
	Unnecessary Warnings and Declarations Removed from Generated Cod
	Retain .rtw File Option Now Works in Accelerator Mode
	S-Function Target Memory Allocation Bug Fix
	TLC Bug Fixes

	Version 4.0 (R12) Real-Time Workshop Software
	New Real-Time Workshop Embedded Coder Product
	Compatibility Considerations

	Support for Simulink Data Objects
	Support for ASAP2 Data Files
	Enhanced Real-Time Workshop Configuration Pane
	Other User Interface Enhancements
	Compatibility Considerations

	Support for New Simulink Advanced Options Pane
	Compatibility Considerations

	Model Parameter Configuration Dialog Box
	Compatibility Considerations

	Support for Tunable Expressions
	S-Function Target Enhancements
	External Mode Enhancements
	Compatibility Considerations

	Build Directory
	Compatibility Considerations

	Code Optimization Features
	Compatibility Considerations

	Subsystem Code Generation
	Nonvirtual Subsystem Code Generation
	Compatibility Considerations

	Standard Filename Extensions for Generated Files
	Compatibility Considerations

	hilite_system and Code Tracing
	Compatibility Considerations

	Generation of Parameter Comments
	Borland 5.4 Compiler Support
	Enhanced Makefile Include Path Rules
	Column-Major Matrix Ordering
	Compatibility Considerations

	S-Function Target MEX-Files Must Be Rebuilt
	Compatibility Considerations

	Target Language Compiler Enhancements
	Compatibility Considerations

	Compatibility Summary for Real-Time Workshop Software

